
Deterministic error model for quantum computer simulation

Eric Chi,* Stephen A. Lyon,† and Margaret Martonosi‡

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
�Received 2 January 2008; published 14 May 2008�

Quantum computers �QCs� must implement quantum error correcting codes �QECCs� to protect their logical
qubits from errors, and modeling the effectiveness of QECCs on QCs is an important problem for evaluating
the QC architecture. The previously developed Monte Carlo �MC� error models may take days or weeks of
execution to produce an accurate result due to their random sampling approach. We present an alternative
deterministic error model that generates, over the course of executing the quantum program, a probability tree
of the QC’s error states. By calculating the fidelity of the quantum program directly, this error model has the
potential for enormous speedups over the MC model when applied to small yet useful problem sizes �contain-
ing on the order of a dozen logical qubits encoded in the ��7,1,3�� QECC plus associated ancilla�. We observe
a speedup on the order of 1000X when accuracy is required, and we evaluate the scaling properties of this new
deterministic error model.

DOI: 10.1103/PhysRevA.77.052315 PACS number�s�: 03.67.Lx

I. INTRODUCTION

Errors from decoherence and gate imprecision are one of
the greatest challenges in realizing a quantum computer. For-
tunately, quantum error correction and fault-tolerant proto-
cols have been developed to combat decoherence in quantum
computers �QCs� �1–6�. These approaches encode logical
program qubits into code blocks and perform all logical op-
erations on the encoded blocks so as to detect and correct
errors and prevent any errors from propagating wildly. For
example, the ��7,1,3�� quantum error correction code
�QECC� encodes one logical qubit into a block of seven
physical qubits. Every logical operation is followed by an
error recovery phase that extracts error syndromes from a
logical qubit code block and performs corrective procedures
if necessary.

Error modeling is critical for developing and evaluating
QC architectures. By tracking the probabilities of errors act-
ing on physical qubits, we may evaluate the effectiveness of
QECCs, error recovery techniques, and microarchitecture
noise tolerances.

The simplest noise models apply the Monte Carlo �MC�
simulation strategy, which randomly samples possible error
scenarios using a random number generator. This methodol-
ogy has been applied to previous studies including Refs.
�7,8�. The downside to MC simulation is its long runtime.
When used to measure the probability of an uncommon
event �for example, the probability that error recovery will
fail�, the MC simulator will need to run a number of itera-
tions that is several orders of magnitude more than the ex-
pected period of that event in order to generate enough
samples. For example, a small quantum program with only
two logical qubits required nearly eight days of MC simula-
tion runtime to achieve three significant digits of accuracy.

We present an alternative error model that deterministi-
cally tracks error probabilities rather than relying on random

sampling. Since random sampling potentially requires many
tries before encountering rare events, our error model aims to
improve performance by systematically computing probabili-
ties of error events and evaluating their effects. Our model
tracks the possible error states of the simulated QC and miti-
gates the exponential growth in the number of error states by
pruning the probability tree with customizable thresholds.
We compare the effectiveness of this deterministic error
model with a simple MC model focusing on speed versus
accuracy trade-offs.

Steane’s work �8� presented a similar approach with a
probability tree-based error model verified with MC simula-
tion. Our work distinguishes itself by being more general and
fitting into a simulation framework. Whereas Steane’s model
is a formula to calculate the crash rate probability based on
the structure of the QECC check matrices, our error model
processes generic error events and may be better suited for
analyzing different error recovery protocols or architectural
overheads.

Aliferis et al. presented a combinatorial error model that
counted the number of pairs of error locations that were ma-
lignant �9�. Our work may be considered a generalization of
this malignant-pair counting approach. Although our ap-
proach is general enough to evaluate arbitrary combinations
of error locations, the pruning thresholds may be configured
so that only pairs of error locations are evaluated. Our work
further distinguishes itself by processing error locations as
potential modifications on the program’s error state. Al-
though tracking the error state may take more work, it may
also permit greater flexibility and accuracy in evaluating
fault conditions.

This paper proceeds as follows. Section II describes our
deterministic error model. Section III describes our experi-
mental methodology. Section IV presents our results and Sec.
V concludes.

II. A DETERMINISTIC APPROACH TO QUANTUM
ERROR SIMULATION

A. Algorithm overview

The overall algorithm of our deterministic error model is
to develop a probability tree that tracks the evolution of pos-

*echi@princeton.edu
†lyon@princeton.edu
‡mrm@princeton.edu

PHYSICAL REVIEW A 77, 052315 �2008�

1050-2947/2008/77�5�/052315�6� ©2008 The American Physical Society052315-1

http://dx.doi.org/10.1103/PhysRevA.77.052315


sible errors in the physical qubits comprising the quantum
computer. By tracking the emergence and evolution of ran-
dom errors, the model may calculate the effectiveness of
quantum error correction and the fidelity of the quantum pro-
gram.

Each node in this probability tree pairs an error state,
which represents a possible error condition for a set of qu-
bits, to a probability value. The probability tree is initialized
to a known starting state. From the error model’s perspective,
a quantum program is represented as a series of error events
and error tasks. These error events or tasks evolve the prob-
ability tree by creating new leaf nodes �and potentially ex-
panding the number of possible error states� reflecting the
desired state and probability changes. The final probability
tree will have a number of levels equal to the number of error
events and tasks processed. In practice, the implementation
need only track the most recent level of the probability tree
to generate the next level.

Upon conclusion of program simulation, the error model
sums the probabilities of the leaf nodes that match desired
characteristics �e.g., where the code blocks sustain no more
than a correctable number of errors�. The error model may
thereby calculate the overall failure rate of the program.

B. Pauli strings as error states

An arbitrary error state of an individual qubit may be
quantized into one of the four Pauli operators I, X, Y, or Z.
The identity operator I indicates the error-free state. The X,
Z, and Y error states indicate the presence of a bit-flip, phase-
flip, and combined bit- and phase-flip errors, respectively.
Each error state is associated with a probability value, and a
qubit may be in a superposition of multiple error states.

It is necessary to track joint error probabilities among
qubits to correctly calculate correlated errors. Our model ac-
complishes this by tracking the error states of a set of qubits
as a group encapsulated in a QubitSet data structure. The
error states in a QubitSet are then represented as strings of
Pauli operators �or Pauli strings�. In our error model, each
physical qubit is associated with exactly one QubitSet, so the
QubitSets partition all of the qubits in the simulated QC.

In our implementation, every QubitSet has a hash table
that associates the Pauli string error states to double floating-
point probability values: an error map. The states in this error
map represent the potential error conditions for the qubits in
the QubitSet. The error map effectively contains all of the
nodes on the same level of the error probability tree. The
transition from one level to the subsequent level of the prob-
ability tree is modeled by error events and error tasks that
evolve error maps.

C. Error events and tasks represent the quantum program

Error events and error tasks manipulate the error maps to
reflect potential changes in state. Error events represent po-
tential sources of errors during execution. The set of possible
events is open-ended, but we incorporated the following po-
tential errors: qubit decoherence during idle time �memory
errors�, decoherence while a qubit is moving �transportation
errors�, decoherence during operations, and errors due to op-

eration imprecision. Our error events affect either one or two
qubits �to represent correlated errors from two-qubit opera-
tions�. If an error event targets two qubits, both qubits need
to be members of the same QubitSet.

Error tasks are more general actions that interact with
error maps. These tasks may modify error maps similarly to
error events, or they may simply iterate through the entries to
make an interesting calculation. Because error correction is
such an important application for error analysis, many of the
error tasks that we have implemented enact error correction
effects. For example, we have tasks that represent ancilla
verification, syndrome extraction, and the actual correction
of data code blocks. These tasks are tied to measurement
operations when information is revealed.

Another set of important tasks direct QubitSets to merge
or split. The number of potential states in a QubitSet’s error
map is exponentially related to the number of qubits in that
set. Therefore, it is desirable to have smaller QubitSets when
possible. However, two-qubit error events require that both
qubits exist in the same QubitSet. If the two target qubits of
such an event reside in different QubitSets, then those two
QubitSets must merge into a larger QubitSet. Splitting larger
QubitSets into smaller QubitSets is desirable to reduce the
overall memory footprint when the loss of joint probability
information is acceptable. This case often occurs after mea-
surement of qubits. The merging and splitting of QubitSets
will be subsequently described in greater detail.

From the error model’s perspective, a simulated quantum
program is a sequence of these error events and error tasks.
This error model can be embedded into an existing QC ar-
chitecture simulator by embedding these error events and
tasks into the program instructions, and much of this embed-
ding may be automated.

D. Evolving error maps

Error events and many error tasks function by evolving a
QubitSet’s error map. The basic algorithm is straightforward:
an empty error map is used as the new error map; every state
in the old error map is possibly transformed and/or expanded
�branched� into multiple states and then appended to the new
error map. This new error map encapsulates the next lower
level of the error probability tree.

We follow the example of Ref. �8� for the introduction
and propagation of errors. An error event is stochastic; it
leaves the QubitSet unchanged with probability 1− f , the
probability that the event does not trigger an error. A one-
qubit error event may transform an error state by adding an
X, Y, or Z error with equal probabilities summing to f . Two-
qubit error events fall into fifteen possibilities: IX, IY, IZ, XI,
XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, and ZZ. Certain
operations may also transform or propagate errors. For ex-
ample, the Hadamard operation transforms X to Z errors and
vice versa. Two-qubit operations such as the controlled-NOT

�CNOT� gate may propagate certain errors between the two
operand qubits.

Because the branching state behavior during this evolu-
tion may lead to an exponential increase in the number of
states, we impose a parametrized event branching threshold.

CHI, LYON, AND MARTONOSI PHYSICAL REVIEW A 77, 052315 �2008�

052315-2



This branching threshold prevents states with probabilities
smaller than the threshold from branching into even smaller
states. An appropriately selected threshold will abort the cre-
ation of minute error states that are relatively insignificant.
The error map evolution process including the application of
the branch threshold is illustrated in Fig. 1.

E. Merging and splitting QubitSets

Merging is a special task that takes two QubitSets as in-
puts and creates a new combined QubitSet that contains all
of the inputs’ constituent qubits. The merged QubitSet’s error
states are a cross product of the input error maps’ states. A
merge threshold is applied during this cross product to re-
duce the state-space expansion, so a new merged state is
created only if its resultant probability is greater than the
merge branch threshold.

We have two approaches to handling merged error states
that fall below the merge branch threshold: the preservation
approach and the lossy approach. The preservation approach
takes the less probable of the two states to be merged and
converts that state to the error-free state. This way, the error
information in the more probable error state is retained in the
resultant merged state. The lossy approach simply discards
the low-probability merged error states. These two ap-
proaches will yield near-similar results when the merge
threshold is set appropriately. If the merge threshold is too
large, the preservation approach will overestimate the suc-
cess rate while the lossy approach will underestimate the
success rate. This is because the less probable an error state
is, the more errors it is likely to have �noise events are as-
sumed to be improbable�. The preservation approach con-
verts low probability states with higher error weights �the
number of bits in a Pauli string bearing errors� to lower
error-weight states, reinforcing their probabilities. These
lower weight error states are more likely to be correctable by
QECCs, so the resultant success rate is inflated. Conversely,
the lossy approach discards error states and may lead to an
undercounting of successful error states. Figure 2 illustrates
merging QubitSets with these two approaches.

After qubits have been measured �in the course of simu-
lated program execution�, it is no longer necessary to track
their error states. A QubitSet may then split to remove the
measured qubits and reduce the size of its state space. Split-

ting a QubitSet partitions a QubitSet into two smaller Qubit-
Sets and is the inverse procedure of merging. No thresholds
are necessary for this procedure as the state space never ex-
pands while splitting.

F. Modeling error correction effects

Because quantum error correction dominates the execu-
tion load of a QC, the principal purpose of an error model is
to evaluate the effectiveness of applying a QECC. Our ap-
proach models the behavior of error correction by tracking
the error states of the encoded qubits and the ancilla qubits
used in the error recovery process. If the error states of these
qubits are within the tolerances of the QECC, then the error
recovery procedure is considered a success. Error recovery
involves the following steps: preparing several blocks of an-
cilla qubits to a specific state; verifying that the ancillae were
prepared correctly by interacting them with verification bits;
interacting the prepared ancilla blocks with the encoded data
qubits to extract syndromes from the data block; and per-
forming corrective operations on the data block based on the
syndrome information.

Although our error model is not meant to track program
state, in the case of error correction, the program state can be
rather pertinent. The principal example here is the syndrome
extraction process. After interacting the ancilla block with
the data block, the ancilla is measured, and that measured
value is the syndrome. That syndrome is important state in-
formation that we want to keep, so we have a syndrome
measurement error task that stores the syndrome information
in the error state space corresponding to the measured ancilla
qubits. This dual use of the error state allows the syndrome
information to be stored in the error map. Corrections to the
data block may be made as a variation of the general error
map evolution algorithm: prepare a new error map; iterate
through the old error map; make a decision to correct the
data based on the stored syndrome information; and append
the resultant error state to the new error map. The other
components of the error recovery process are similarly ef-
fected via error tasks that modify the error map based on
error state information.

III: 0.80 III: 0.575
IIX: 0.15

IIY: 0.095
IIZ: 0.095

IIX: 0.185
IXX: 0.05

IXX: 0.050

III: 0.56

IIY: 0.08
IIZ: 0.08

IIX: 0.08
III: 0.575

IIY: 0.095
IIZ: 0.095

IIX: 0.185

Original
error map

New error map
1 2 3

FIG. 1. �Color online� Example. An error event with probability
0.3 acts on bit 0 of a 3-bit QubitSet. Assume that the event branch
threshold is 0.1. The noise event creates a new error map and �1�
initially expands the error-free III state into four states: III, IIX, IIY,
and IIZ. �2� The original IIX state is processed next and also ex-
panded with its resultant error scenarios added to the new error
map. �3� The IXX state falls below the event branch threshold so is
appended to the new error map without expansion.

III: 0.80
IIX: 0.15
IXX: 0.05

II: 0.90
YI: 0.10

IIIII: 0.720
IIIYI: 0.085
IIXII: 0.135
IIXYI: 0.015
IXXII: 0.045

III: 0.80
IIX: 0.15
IXX: 0.05

II: 0.90
YI: 0.10

IIIII: 0.720
IIIYI: 0.080
IIXII: 0.135
IIXYI: 0.015
IXXII: 0.045

Preservation merge Lossy merge

FIG. 2. �Color online� Two QubitSets merge with a merge
threshold of 0.01. The merged error state IXXYI has a probability of
0.005, which is below the merge threshold. The preservation ap-
proach converts this merged state to IIIYI and avoids creating a new
error state with minuscule probability. On the other hand, the lossy
approach simply discards this error state.

DETERMINISTIC ERROR MODEL FOR QUANTUM… PHYSICAL REVIEW A 77, 052315 �2008�

052315-3



III. SIMULATION METHODOLOGY

We programmed both our deterministic error model and a
simple MC error model in Java. For concreteness, we
adopted the eSHe QC architecture �10� for noise and timing
parameters �Table I�, but the modeling approach is applicable
to any architecture.

Our MC error model follows the example of the one used
in Ref. �8�. Qubit error states are again represented by Pauli
operators. However, errors are generated by a random num-
ber generator �RNG� that produces values between 0.0 and
1.0. If the random value is less than the noise parameter for
the error event, then an error is produced. We use the
Mersenne Twister pseudo-RNG that is bundled with RNG-

PACK 1.1a �11�. This RNG has an exceptionally long period
of 219937−1. The same set of operations and error events are
modeled in both error models. Because a single iteration of
the MC model yields only a Boolean value of whether or not
that run through of the program succeeded, the MC model
must be executed many times to estimate a success probabil-
ity.

We executed our deterministic error model results on a 12
GB, 1.8 GHz Opteron computer. The MC results are from a
cluster of slightly faster 4 GB, 2 GHz Athlon 64 X2 comput-
ers. Performance between these two setups are comparable
and should yield a reasonable view of performance differ-
ences in the two error models.

Our simulated quantum programs focus on the error re-
covery procedures that dominate every program. We adopt
the ��7,1,3�� QECC for this paper. Error recovery consists of
two phases: one to detect and correct bit-flip errors, and the
other, phase-flip errors. Each of these phases consists of three
syndrome extractions using specially prepared and verified
ancilla blocks. If a majority syndrome exists and indicates an
error, correction procedures are applied. The ��7,1,3�� QECC
is only capable of correcting general errors with a weight one
qubit per code block. If more than one qubit in a block has
an error, then the block is considered to be uncorrectable,
and the QC is considered to have crashed. The deterministic
error model tallies up all the error state probabilities that do
not crash. Likewise, the MC simulator tallies the number of
iterations that do not crash.

We do not focus on higher-level program behavior for this
paper. Logical qubits are entangled with each other through

logical CNOT gates, and every logical operation is followed
by error recovery. The final cycle of program execution is
concluded with measurement of the program qubits.

IV. RESULTS

A. Threshold parameter exploration

Our metrics of interest in evaluating error models are
simulation time and accuracy. We will present these metrics
while exploring the effects of the various parameters avail-
able in the deterministic error model: event branch thresh-
olds, merge thresholds, and preservation versus lossy
merges. For this parameter exploration, we direct our error
model to evaluate a simple quantum application involving
two logical qubits: a logical CNOT gate is performed on these
two logical qubits, followed by error recovery of both qubits,
a second CNOT gate and measurement. For parameter values,
we vary the event branch threshold from 10−5 to 10−7 and the
merge threshold from 10−10 to 10−16. Smaller threshold val-
ues result in fewer applications of the threshold and a more
accurate result.

The error model is directed to measure the crash rate of
the QC: the probability that the program will not complete
successfully due to errors overwhelming error correction ca-
pabilities. All of our experiments in this parameter explora-
tion are simulating the same quantum program. We select the
results from using the smallest threshold values as the base-
line results for evaluating accuracy, because they should lead
to the least amount of information being thrown away. These
baseline parameters are 10−7 for the event branch threshold
and 10−16 for the merge threshold. Both preservation and
lossy merge approaches resulted in nearly the same crash
rate �within 0.004% of each other� with these threshold val-
ues: a crash rate of 1.55�10−5. Our results plot relative in-
accuracy among the simulated results as percentage devia-
tions from the baseline result.

Figure 3 plots the relative inaccuracy versus simulation
time for a variety of threshold parameters. Each line in the

TABLE I. Timing and noise parameters for the
eSHe architecture described in Ref. �10�.

movement speed 100 �m /�s

one-bit op time 1 �s

two-bit op time 1 ms

memory decay constant 1�105 s

operation decay constant 5�103 s

transportation decay constant 2.5�104 s

one-qubit op error rate 1�10−6

two-qubit op error rate 1�10−4

measurement error rate 1�10−4

reset error rate 1�10−6

10�10
10�9
10�8
10�7
10�6
10�5
10�4
10�3
10�2
10�1
100

0 50 100 150 200

re
la
ti
ve

in
ac
cu
ra
cy

simulation time (min)

10�5 P

10�6 P

10�7 P

10�6 L

10�7 L

event branch threshold
&merge type:

10�5 P
10�6 P
10�7 P
10�6 L
10�7 L

FIG. 3. Results of a parameter analysis of the error model. In-
accuracy �lower is better� is plotted as a function of simulation time.
Each line represents a particular event branch threshold ranging
from 10−5 to 10−7, and the merge threshold varies along the line
from 10−10 to 10−16 in increments of 100 �inaccuracy declines with
the merge threshold�. The legend also specifies whether the preser-
vation �p� or lossy �l� approach is used for merging.

CHI, LYON, AND MARTONOSI PHYSICAL REVIEW A 77, 052315 �2008�

052315-4



plot corresponds to a specific event branch threshold and
merge approach �preservation or lossy�. An event branch
threshold of 10−5 is shown to be too large and results in an
inaccuracy greater than 10% regardless of the merge thresh-
old. However, once the event branch threshold is 10−6 or
smaller, the merge threshold dominates both accuracy and
simulation runtime. A merge threshold of 10−12 yields a crash
rate with accuracy within 0.1% and a simulation time of only
a few minutes. Even greater accuracy is available by reduc-
ing the merge threshold at the cost of greatly expanding the
resultant probability tree and increasing the simulation time
to the order of 1 to 3 h.

Lossy merges perform faster than preservation merges be-
cause less work is performed when the merge threshold is
exceeded. However, the lossy merges are also significantly
less accurate than the preservation merges for larger merge
threshold values �10−12 or greater�. This accuracy difference
between the two merge approaches dissipates as the merge
threshold is reduced. By comparing the results using both
merge approaches, one may get an idea of whether further
reductions in the merge threshold may yield gains in accu-
racy.

B. Comparison with Monte Carlo simulation

Figure 4 compares the deterministic error model with the
Monte Carlo error model. These results use the same quan-
tum program from the parameter analysis. The deterministic
model results are represented by the data series with the 10−6

event branch threshold, using the preservation merge ap-
proach while varying merge thresholds. Monte Carlo results
are presented with a varying number of iterations per data
point: 106 to 109 iterations with interval factors of 10. In-
creasing the number of iterations linearly increases the simu-
lation time and also increases accuracy.

The most accurate MC result is off by only 0.22% �accu-
rate to three significant digits� from the baseline. However,
this level of accuracy for the MC model comes at a great
cost: the simulation took 7.9 days to execute. The determin-
istic error model results with a similar level of accuracy
�10−7 event and 10−12 merge thresholds� runs in 3.3 min. This

is a speedup of over 3400X compared to the MC model
running 1 billion iterations.

The chief advantage of the MC model is that it is simpler
than the deterministic model and has lesser development and
verification costs. Its performance scaling is also fairly
straightforward and predictable: it is linearly proportional to
the number of operations and iterations. Because it is a sam-
pling approach, accuracy per iteration is proportional to the
actual crash rate. The MC model remains valuable as it may
calculate a reasonable estimate of the crash rate without too
many iterations. Larger MC problems may be solved by dis-
tributing the workload across multiple computer processors.

C. Scaling with program size

Whereas the MC model has predictable scaling properties
with respect to program size, the deterministic error model’s
scaling is less certain as it depends on interactions between
the current error map states, the error events and tasks, and
the branch and merge thresholds. Memory consumption is of
particular concern, because the probability tree has a worst-
case exponential scaling behavior that we attempt to mitigate
with the application of branching thresholds. The basic two-
logical qubit program used earlier in the parameter explora-
tion consumed about a gigabyte of memory for the determin-
istic model �partially due to unhurried garbage collection in
the Java virtual machine� compared to hundreds of mega-
bytes for the MC simulator. This subsection evaluates how
the deterministic model’s runtime and error map sizes scale
with program size.

We extend our basic quantum program to support an ar-
bitrary number of logical qubits. Given N logical qubits, our
scalability-testing program applies N−1 logical CNOT gates
and recoveries spread over log2 N phases �each additional
phase consumes an additional seven cycles of program run-
time�. These logical CNOT gates are applied in a treelike fash-
ion with one CNOT gate in the first phase, two in the second,
four in the third, and so forth. The possibility of correlated
errors exists among all N logical qubits. All of the logical
qubits merge into the same QubitSet by the end of the pro-
gram, so this should give an indication of how the error map
scales with larger programs.

Figure 5 plots how the deterministic error model’s run-
time scales with the program size. The event and merge

10�10
10�9
10�8
10�7
10�6
10�5
10�4
10�3
10�2
10�1
100

0.01 0.1 1 10 100

re
la
ti
ve

in
ac
cu
ra
cy

simulation time (hr.)

MC

10�7 P

FIG. 4. A comparison of the inaccuracy and simulation times of
the deterministic error model and the Monte Carlo error model.
Note that the deterministic model performs on the order of 1000X
better for inaccuracy levels of 1% or less.

0

5

10

15

20

25

30

2 4 6 8 10 12

si
m
ul
at
io
n
ti
m
e
(h
r.
)

numberof logical qubits

FIG. 5. Graph of the simulation time as a function of the number
of logical qubits.

DETERMINISTIC ERROR MODEL FOR QUANTUM… PHYSICAL REVIEW A 77, 052315 �2008�

052315-5



threshold parameters are kept constant here at 10−6 and
10−12, respectively, and we utilize the preservation merging
approach. There are inflection points in this curve at four and
eight logical qubits; these points correspond to when the pro-
gram size is increased by an extra logical CNOT phase. Figure
6 plots how the error map size also scales superlinearly �al-
beit not quite as steeply� with increasing program size. This
scaling suggests that runtime is based on a combination of
cycle time and error map size.

The primary limiting factor to scalability is memory ca-
pacity. In our experiments varying the number of logical qu-
bits from 2 through 13, our memory consumption varied
from 1 to 8 GB. Thus, this error model is limited to studying
small-scale problems on the order of a dozen logical qubits
in the ��7,1,3�� QECC. To give some perspective on the error
correction overhead, the scalability test with 10 logical qu-
bits simulated a total of 1150 physical qubits over 34 cycles.
Pairing this combinatorial noise model with a reasonably
high-performance computer with 8 GB of memory would
permit the efficient study of recovery procedures and simple
logical circuits for the ��7,1,3�� QECC.

D. Application to other QECCs

Scalability with respect to more complicated �i.e., effec-
tive� QECCs is expected to be poor as this combinatorial
approach scales with the number of viable error states. Con-
sider replacing the ��7,1,3�� QECC with the ��21,3,5�� Golay

code, which may correct errors of up to 2 qubits per 21-bit
code block. Whereas the ��7,1,3�� code has 22 nonfailing
error states per code block, the ��21,3,5�� Golay code has
1954 such states per code block. We may estimate, then, that
evaluating the Golay code will require 89X more time and
memory. With simple ��7,1,3�� experiments requiring ap-
proximately 1 GB of memory, similar ��21,3,5�� experiments
would require 89 GB of memory. Applying this model to
such a problem would require either distributing the error
map data across many computers or utilizing a disk-based
data structure.

V. CONCLUSION

We have presented a new deterministic error model for
QC simulation that offers the potential for speedups on the
order of 1000X compared to Monte Carlo simulation for ac-
curate calculations of fidelity. Similar to MC simulation, our
model has runtime parameters that offers the user trade-offs
between accuracy and simulation speed, enabling its use for
a range of applications. While the scalability of our error
model is memory-limited, it is capable of analyzing interest-
ing problems involving on the order of a dozen ��7,1,3��
logical qubits.

With these capabilities, the error model may be applied to
many interesting problems including evaluating low-level
microarchitecture designs �including qubit operation and
transportation flows� and analyzing fault-tolerant protocol
implementations. Evaluating these system-level effects is be-
coming increasingly important as QC development
progresses beyond small-scale physical experiments with a
vision toward larger-scale designs. As we improve our un-
derstanding of the qubit noise environment, it is important to
evaluate the effects of more realistic and complex decoher-
ence effects. Our error modeling approach is flexible and
may be extended to analyze these sorts of noise environ-
ments, such as biased noise or non-Markovian time- or
space-correlated errors. With the diverse spectrum of QC de-
vice technologies and architectures under development, the
ability to measure the fidelity of these systems will be crucial
for comparing these very different designs.

�1� J. Preskill, Proc. R. Soc. London, Ser. A 454, 385 �1998�.
�2� P. W. Shor, in IEEE Symposium on Foundations of Computer

Science �IEEE, Washington, D.C., 1996�, pp. 56–65.
�3� A. M. Steane, Phys. Rev. Lett. 77, 793 �1996�.
�4� A. M. Steane, Phys. Rev. Lett. 78, 2252 �1997�.
�5� A. M. Steane, Nature �London� 399, 124 �1999�.
�6� E. Knill, Nature �London� 434, 39 �2005�.
�7� S. Balensiefer, L. Kregor-Stickles, and M. Oskin, in ISCA ’05:

Proceedings of the 32nd Annual International Symposium on

Computer Architecture �IEEE Computer Society, Washington,
DC, 2005�, pp. 186–196.

�8� A. M. Steane, Phys. Rev. A 68, 042322 �2003�.
�9� P. Aliferis, D. Gottesman, and J. Preskill, Quant. Inf. Comput.

6, 97 �2006�.
�10� E. Chi, S. A. Lyon, and M. Martonosi, in International Sym-

posium on Computer Architecture �ACM, New York, 2007�.
�11� P. Houle, RNGPACK: High-quality random numbers for java,

http://www.honeylocust.com/RngPack/, 2003.

0.5

0.0

1.5

1.0

2.0

2.5

3.0

3.5

2 4 6 8 10 12

er
ro
rm

ap
en

tr
ie
s

numberof logical qubits

×106

FIG. 6. Graph of the maximum error map size as a function of
the number of logical qubits.

CHI, LYON, AND MARTONOSI PHYSICAL REVIEW A 77, 052315 �2008�

052315-6


