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ABSTRACT
Quantum computing is a promising technology for high-
performance computation, but requires mature toolflows that
can map large-scale quantum programs onto targeted hard-
ware. In this paper, we present a scalable compiler for large-
scale quantum applications, and show the opportunities for
reducing compilation and analysis time, as well as output
code size. We discuss the similarities and di↵erences be-
tween compiling for a quantum computer as opposed to a
classical computer, and present a state-of-the-art approach
for compilation of classical circuits into quantum circuits.
Our work also highlights the importance of high-level quan-
tum compilation for logical circuit translation, quantitative
analysis of algorithms, and optimization of circuit lengths.
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1. INTRODUCTION
Quantum computing has attracted major interest in re-

cent years, mainly because it o↵ers the possibility of ef-
ficiently solving a class of problems for which no e�cient
(polynomial-time) classical algorithm yet exists. Factor-
ing a large number into its prime factors, searching a large
database, and simulating chemical atomic systems are exam-
ples of such problems [7, 22, 24]. With a sharp increase in
research e↵orts towards the realization of quantum comput-
ers, ongoing progress has been made in both identifying the
technological challenges and o↵ering solutions to overcome
those hurdles.

Most previous work has focused on designing, mapping,
and scheduling hand-optimized quantum circuits for imple-
menting small-scale quantum algorithms. By introducing
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Sca↵CC, we focus on automated tools which can support a
broad range of large-scale quantum benchmarks. This paper
makes the following contributions:

First, we make key observations regarding the di↵erences
between classical and quantum compilation. For example,
quantum programs typically specify a fixed circuit, and there-
fore contain one execution trace. They are also commonly
compiled for specific input sizes or values. As a result, they
yield deeply, statically analyzable code, mitigating the need
for optimizations such as branch prediction and emphasiz-
ing other optimizations such as parallelization of operations
(instructions). This creates opportunities for aggressive con-
stant propagation and deep optimization, while simultane-
ously putting greater pressure on the scalability of the com-
piler algorithms employed.

Second, we present compiler algorithms and compiler out-
put formats that can accommodate the large scale and deep
optimization found in our quantum benchmarks. In par-
ticular, we find that output modularity and a dynamic,
instrumentation-driven compilation technique are important
to managing scale.

Third, despite the di↵erences inherent in quantum com-
pilation as opposed to the classical case, we show the appli-
cability of known classical compiler algorithms, such as loop
unrolling and procedure cloning, to the domain of quantum
computing. Our compiler leverages mature compiler tech-
nologies through the LLVM framework.

Fourth, we present data-flow analysis as an example of
classical techniques employed in the quantum domain. In
particular, we propose the use of data-flow analysis tech-
niques, both for important program checks such as“no-cloning”
and“entanglements,”and also for obtaining circuit estimates
such as the critical circuit path or its usage of qubits and
operations. These metrics help focus further optimizations.

Finally, recognizing that quantum programs often use clas-
sical reversible logic to describe sub-circuits of a quantum
circuit, we present a novel technique for their compilation
and simulation.

The rest of this paper is organized as follows: Sections 2
and 3 give background on quantum computation, and then
an overview of the compiler we have developed to translate
from high-level quantum algorithms to lower-level quantum
assembly operations. Sections 4, 5, and 6 describe the re-
search challenges in di↵erent parts of the compiler toolflow,
including techniques to manage large scale and to synthesize



from classical reversible logic. Section 7 discusses analysis
passes enabled by the Sca↵CC functionality. Finally, Section
8 presents related work, and Section 9 o↵ers conclusions.

2. QUANTUM COMPUTATION
This section o↵ers a brief background on basic concepts

in quantum computation.
Quantum States and Superposition: While classical

bits exist in only one of the binary states at any given time,
quantum bits, or qubits, can exist in a superposition state,
which is a linear combination of the |0i and |1i states. This
extends to multiple qubits, i.e. a quantum mechanical sys-
tem with 2 qubits can be simultaneously representative of
the four states |00i, |01i, |10i and |11i. Quantum operations
can modify such superposition states simultaneously, allow-
ing some quantum algorithms to perform faster than their
classical counterparts. Quantum states also exhibit other
properties such as entanglement, which causes the state of
two qubits to be dependent on each other, and no-cloning,
which restricts copying of one arbitrary quantum state into
another. Such unique characteristics have enabled quantum
algorithms for fast and secure communication.

Though a quantum algorithm uses quantum bits and oper-
ations during the computation, it must, in the end, provide
a classical answer to a classical inquiry. This is achieved
using measurement, which causes a qubit to lose its super-
position and collapse into a deterministic state of |0i or |1i.
Since this process is probabilistic in nature, quantum algo-
rithms seek to manipulate quantum states so as to increase
the likelihood of measuring the desired answer in the end.

Quantum Operations and Reversibility: Any valid
operation on quantum states must be unitary. This im-
plies that all operations, and in fact the entire quantum cir-
cuit, must be reversible. Analogous to classical logic gates,
the quantum operations which form basic building blocks of
quantum circuits are known as quantum gates. Quantum
algorithms typically describe a quantum circuit defining the
evolution of multiple qubits using basic quantum gates.

Compiler Implications: This theoretical background
guides the design of an e↵ective quantum compiler. Some of
the described quantum phenomena such as entanglement be-
tween states of qubits or impossibility of copying states are
important in detecting possible logical flaws in a program.
Section 7 shows how this can be detected by the compiler in
order to inform the programmer about correctness of code.
The reversibility criterion is also important to compilers of
quantum programs – non-reversible sub-circuits need to be
detected, or made reversible, for valid quantum circuit gen-
eration. In this, the compiler must be aware of the cost of
qubits as the most expensive resources. Section 3.1 discusses
these aspects in more detail.

3. OVERVIEW OF SCAFFCC
Sca↵CC compiles a program written in the Sca↵old pro-

gramming language, and outputs a quantum assembly (QASM)
representation. It targets logical quantum computation, that
is, compilation, analysis and optimizations before synthesis
into machine-dependent physical-level operations. This sec-
tion gives a broad overview of the input and output lan-
guages, and the design of the Sca↵CC compiler.

3.1 Scaffold Quantum Programming Language

Sca↵old [9] is a high-level, imperative quantum program-
ming language, designed as an extension to C. Sca↵old in-
cludes new data types, qbit and cbit, corresponding to quan-
tum bits, and classical bits obtained as a result of measure-
ment, respectively. Furthermore, it includes basic quantum
operations (gates) such as Pauli X, Hadamard, To↵oli, Ro-
tation, etc. as built-in entities. A Sca↵old program can be
regarded as being composed of two parts: the quantum part
containing descriptions of quantum bits and operations, and
the classical part containing classical control around those
operations, such as loops and conditionals.

Similar to a C program or a Verilog classical circuit, al-
most every Sca↵old quantum code has a hierarchical struc-
ture and is organized into modules. Each module repre-
sents a sub-circuit of the overall program circuit, and can
be instantiated within larger (parent) modules. Since quan-
tum circuits must be “reversible”, each module must either
be specified using unitary quantum operations, or be trans-
formed as such by the compiler. We have equipped Sca↵old
with a novel class of modules in the domain of quantum
programming, called Classical-To-Quantum-Gate (CTQG),
which allows sub-circuits to be defined as classical logical
circuits. Sca↵CC converts these into valid quantum codes,
as discussed in Section 6.

3.2 QASM Assembly Language
The quantum assembly language of QASM, proposed in

[15, 23], describes quantum programs using a set of low level
quantum gates. QASM specifies logical qubits and the se-
quence of gate operations performed on them. Basic data
types in QASM are qbit and cbit, and the instruction set
includes a universal set of gates (Controlled-NOT (CNOT),
Hadamard (H), Phase (S), ⇡/8 Rotation (T)), plus opera-
tions for measurement and preparation in the states |0i and
|1i. QASM is independent of the underlying quantum tech-
nologies, and assumes that the hardware can implement the
described circuit using suitable gate transformations and er-
ror correction in the next stages of synthesis.

QASM has been used to implement and study quantum
circuits for small problems using a flat circuit format [5, 14,
20]. However, realistic quantum circuits that we examined
contain between 107 and 1012 gates, rendering full flattening
infeasible. In Section 4, we introduce modifications to the
original flat format that enable more manageable code sizes.

3.3 Internal Structure of the Compiler
Fig. 1 depicts a block diagram of Sca↵CC’s internal struc-

ture. We have implemented Sca↵CC in LLVM [12], a rich,
open-source library of compiler technologies, by adding in-
trinsic functions representative of quantum gates and a datatype
representative of qubits. Furthermore, we have extended
Clang, a C-family front-end to LLVM, to accommodate pars-
ing of our language.

The first step of compilation is to separate the modules
in the program which are marked as CTQG. These mod-
ules have been defined by the programmer using classical
gates, and are handled by the separate CTQG sub-compiler
as described in Section 6. CTQG’s output is translated di-
rectly to QASM without going to LLVM’s intermediate for-
mat, and is linked with the output of the quantum modules
after they have been converted to QASM. Although this
approach yields fast output code generation, it is not suit-
able for whole program analysis since a part of the code will
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Figure 1: Internal structure of the Sca↵CC compiler: The top, middle and bottom parts respectively show translation of
CTQG modules (Section 6), QASM code generation (Section 5), and quantum program analysis (Section 7).

bypass the LLVM-IR representation. Thus, we have imple-
mented a QASM-to-IR translator which we use to convert
the entire program once it has been compiled. This provides
correct input for quantum program analysis.

A critical code generation issue lies in the degree to which
output code can or should be linearized (or flattened). We
refer to this as “classical control resolution”. Our goal is to
establish a judicious balance—we wish to flatten as much as
possible in order to support e�cient synthesis of quantum
circuits, while also keeping enough abstraction to ensure cir-
cuit generation remains tractable. During the compilation of
non-CTQG modules, it becomes necessary to process some
of the classical instructions within them, in order to remove
high-level abstractions and obtain sub-circuits that clearly
specify the sequence of gate operations and qubits which are
acted upon. This amounts to flattening the program on a
per-module basis, and is required for correct scheduling and
mapping during later stages of the toolchain. Unfortunately,
performing code linearization in a way that scales well and
does not result in a time and space explosion is non-trivial.
Section 5 has a detailed description of this step and explores
ways to make it execute faster.

The final phase of the compiler performs a decomposition
of unitary operations into supported gates in QASM, which
is a subset of those allowed in Sca↵old. This is a key step
in the translation of a high-level program into a standard
assembly language, and is similar to instruction selection
in classical compilers. For some gates, this is a straight-
forward process. For example, the output of CTQG contains
many “To↵oli” operations, which in order to be compatible
with QASM, would each be substituted by a fixed 16-gate
sub-circuit. Other gates, such as rotations by arbitrary an-
gles, may be more complex. We employ a state-of-the-art
method, as proposed in [11], to approximate these gates.

Finally, as Section 7 discusses in detail, Sca↵CC can per-
form a range of useful analyses on its input programs, both
for program correctness checks and for circuit estimates.
The LLVM toolkit represents computations as graphs, which
facilitates program analysis.

3.4 Scaffold Benchmarks
We perform a comprehensive study of the performance

of our compilation and analysis techniques using a set of
six quantum algorithms. The coding of these benchmarks
and our tools originally began in the IARPA quantum com-
puter science program. These benchmarks cover many com-
mon themes in quantum algorithm design: Quantum Fourier

Transform, Classical Oracles, State Distillation, Random
Walk, and Amplitude Amplification among others. This
constitutes one of the first studies in compiling such non-
trivial and inclusive quantum programs.

1) Grover’s Search Algorithm: Uses quantum amplitude
amplification to search a database of 2n entries. It is pa-
rameterized by n (log of the number of entries) [7].

2) Binary Welded Tree (BWT): Uses quantum random
walk to find a path between an entry and exit node of a
binary welded tree. The benchmark is parameterized by
height of the tree (n) and a time parameter (s) [3].

3) Ground State Estimation (GSE): Uses quantum phase
estimation to estimate the ground state energy of a molecule.
The benchmark is parameterized here by the molecular weight
(M ), but could also be parameterized by precision [24].

4) Triangle Finding Problem (TFP): A quantum algo-
rithm to find a triangle within a dense, undirected graph
using quantum random walk. The program is parameter-
ized by the number of nodes n in the graph [13].

5) Boolean Formula (BF): Computes a winning strategy
for the game of Hex with quantum random walk. The bench-
mark is parameterized by size of the Hex board (x, y) [2].

6) Class Number (CN): A problem from computational
algebraic number theory that uses Quantum Fourier Trans-
form to compute the class group of a real quadratic number
field. The program is parameterized by p, the number of
digits after the radix point for floating point numbers used
in computation [8].

4. MANAGING SCALABILITY THROUGH
CHOICE OF QASM FORMAT

As stated before, an important research issue concerns
managing the scale of generated QASM code in large-scale
benchmarks. Therefore, here we consider QASM format ad-
justments over previous flat-code proposals, and study their
impact on code generation feasibility.

Hierarchical QASM format (QASM-H): Similar to
hardware description language formats, QASM programs
can be represented by a space-consuming flat description,
or by a denser hierarchical description which takes advan-
tage of sub-circuit duplications to reduce the output code
size. Some modularity is also desirable for program analysis
of large codes. Analysis techniques when applied hierarchi-
cally reduce analysis time and memory usage, thus scaling
better to large program sizes. We demonstrate this through
the example of timing analysis in Section 7.3.



#define n 1000
module foo(qbit q[n])
{
for(int i=0;i<n;i++)
H(q[i]);

CNOT(q[n-1],q[0]);
}
module main()
{
qbit b[n];
foo(b);

}

(a) Sca↵old

qbit b[1000];
H ( b[0] );
H ( b[1] );
.
.
H ( b[999] );
CNOT ( b[999] , b[0] );

(b) QASM-F format

module foo ( qbit* q )
{
H ( q[0] );
H ( q[1] );
.
.
H ( q[999] );
CNOT ( q[999] , q[0] );

}
module main ( )
{
qbit b[1000];
foo ( b );

}

(c) QASM-H format

module foo ( qbit* q )
{
H ( q[0:999] );
CNOT ( q[999] , q[0] );

}
module main ( )
{
qbit b[1000];
foo ( b );

}

(d) QASM-HL format

Figure 2: Code Snippets for QASM-F, QASM-H and
QASM-HL: Progressively more classical control is retained.
Note that Sca↵old does not contain pointers or allow their
manipulation, but QASM address representation for access-
ing memory resembles C syntax for ease of use with LLVM.

Hierarchical QASM with Loops (QASM-HL): Fur-
ther information about repeating quantum operations can
be retained within the QASM format, in the form of loops.
Quantum circuits show two prominent types of quantum op-
erations: The first type are operations that are applied to
a large set of qubits. These are used, for example, when
transforming qubits prepared in the ground state into ini-
tial superposition states. Due to the absence of qubit de-
pendencies, these operations are highly parallel and are im-
plemented simultaneously when the hardware technology al-
lows it. (For example one can use control technologies such
as microwave traps that a↵ect a large number of qubits at
the same time.) We denote these as forall loops.

The second type of operations are serially repeated trans-
formations, typically used in quantum algorithms to con-
verge to a more precise solution. For example, Grover’s
Search Algorithm makes use of a repeated invert-and-reflect
operation that gradually increases the likelihood of measur-
ing the correct answer. In the physical implementation, the
control exercised for the sequence of operations within the
loop body can be synthesized once, and then reused. We
denote these as repeat loops.

In order to identify quantum forall and repeat loops in
high-level programs, we define a pure quantum block as a
basic block that conforms to the following criteria: 1. It
does not contain classical computation instructions such as
arithmetic or compare instructions; 2. It does not contain
function calls which have non-quantum data types as ar-
guments; 3. The qubit array variables depend directly on
the loop induction variable. Through static analysis of the
loops around the purely quantum blocks, we can obtain trip

counts to provide the number of repetitions for the repeat
loops, and loop values to provide the range of qubits that
are simultaneously operated upon in the forall loops. This
allows for e�cient optimizations and analyses.

QASM Code Size Comparison: Fig. 3 shows the re-
duction in code size when using QASM-HL over QASM-H.
A great advantage in code size is already obtained across all
benchmarks when using QASM-H as opposed to flat QASM.

Referring to this figure, QASM-HL output format greatly
helps code size for the Grovers and BWT algorithms, mak-
ing an exponential growth with problem parameters into a
linear one. The reason is that these algorithms make use
of repeat blocks with high iteration count, in a manner that
converges the quantum states to the correct results. As pro-
grams scale, the increased number of quantum operations
is captured within the repeat loop of QASM, keeping the
code sizes small. On the other hand, the TFP algorithm
has numerous forall blocks, but a relatively low number of
repeat blocks. As the problem size for this algorithm scales,
the trip counts of forall loops capture the increased num-
ber of qubits being operated upon, resulting in some code
improvement. For three of the benchmarks, not much ad-
vantage is gained when using QASM-HL over QASM-H. In
the GSE program, very few pure quantum loops and with
low trip counts exist, impeding the e↵ectiveness of loop re-
tention. In addition, a major part of the BF and CN circuits
are compiled using the CTQG sub-compiler, which outputs
a flat circuit format. Quantum loops constitute a very small
percentage of the non-CTQG part, resulting in only slight
code size improvements. Overall, QASM-HL’s advantage is
in making compilation tractable for more programs.
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Figure 3: Reduction in code size of QASM-HL compared to
QASM-H output, due to retention of quantum loops.

5. CODE GENERATION AND SCALING
Another important goal of Sca↵CC is to scale well with

increasing circuit sizes. As previously defined, QASM-HL
supports this by allowing modularity and repetitions in the
output code, which mitigates the size explosion that results
from flattening the whole circuit. However, with the excep-
tion of some loops, QASM-HL still requires per-module flat
code to enable e↵ective circuit synthesis. Therefore, many
classical control constructs, such as if-then-else condition-
als, non-quantum loops, parameterized modules, etc. must
be processed in the compiler. Sca↵old programs contain
the description of a quantum circuit and are thus special-
ized for a particular set of input parameters (or problem
sizes), yielding deeply analyzable programs. This fixed-trace



nature of program control-flow and its non-dependence on
qubit states means that all classical control-flow constructs
can be resolved in the compiler. This section begins with a
motivating example regarding the need for classical control
resolution, and then describes methods for compiler imple-
mentations of it. The speed and tractability advantages of
our second method over the first are discussed at the end.

Consider Fig. 4 which shows a segment of a Sca↵old pro-
gram where the module main contains calls to module Oracle
located inside two nested loops. For each di↵erent value of
j, a di↵erent version of Oracle is called, since the rotation
angle in the Rz rotation gate changes. In order to correctly
decompose this gate, the compiler needs to disambiguate
these di↵erent module versions, and obtain the correct rota-
tion angle for each one to arrive at its equivalent set of gates.
This is why, for example, QASM-HL does not contain pa-
rameterized modules. We investigate how the compiler can
automate this resolution of classical control.

#define s_ 3000 // iteration count

module Oracle (qbit a[1], qbit b[1], int j) {
double theta = (-1)*pow(2.0, j)/100;
X(a[0]);
Rz(b[0], theta);

}

module main () {
qbit a[1], b[1];
int i, j;
for (i=1; i<=s_; i++) {
for (j=0; j<=3; j++) {
Oracle(a, b, j);

}
}

}

Figure 4: Example Sca↵old program showing the need for
classical control resolution. Di↵erent versions of the same
module with di↵erent gate sets are created, but can be dis-
covered either statically using compiler passes such as loop
unrolling and procedure cloning, or dynamically using in-
strumentation and execution.

5.1 Pass-Driven Approach
Our first approach, pass-driven, relies on static usage of

transformation and analysis passes such as heavy constant
propagation and constant folding. It processes the modules
in the call graph of the program in depth-first, pre-order
and unrolls all loops that have not been marked as quantum
loops. It further clones those modules that are called with
di↵erent parameters in multiple call-sites, and uses inter-
procedural constant propagation to specialize those mod-
ules. These steps are repeated until there is no further action
to be taken. Since Sca↵CC uses the LLVM infrastructure,
several pre-written passes are available for these transforma-
tions; we adopt these and expand on them.

Referring back to Fig. 4, we begin by unrolling the inner
loop in module main by a factor of 4, which causes all call
sites to module Oracle to have constant call parameters.
We then use procedure cloning to create a module clone
from each call site that has a unique set of input parame-
ters. We then use inter-procedural constant propagation to
propagate the input parameter constants of the call sites into
each corresponding module. Repetitive application of these
transformation passes (loop unrolling, function cloning and

constant propagation) yields a program that preserves mod-
ularity but is flattened on a per-module basis. This process
is equivalent to a partial execution of the code. This exam-
ple also illustrates a further optimization: simple loops, as
discussed in Section 4, may be kept since their loop bodies
are all quantum and their resource usage can be multiplied
by the loop trip count. The outer loop in module main is
an example of this kind of loop, where the input parameter
“s” is a timestep variable that indicates the number of re-
quired iterations over a circuit segment in order to converge
to the answer. This is the major source of computation in
this benchmark; avoiding unrolling the loop o↵ers a great
gain in space complexity.

5.2 Instrumentation-Driven Approach
The pass-driven approach can quickly become cumber-

some for algorithms that have many large modules. The
transformation passes create large intermediate code sizes,
with unacceptable space and time costs. To address this,
the instrumentation-driven approach shifts from static code
transformation to an execution-based transformation. This
shifts the job of resolving classical dependencies to the clas-
sical processor, recognizing that fast classical processors can
be used to execute through classical portions of the code and
collect information regarding the quantum part.

For such source-to-source rewriting, a naive instrumenta-
tion approach would be to instrument the quantum instruc-
tions to print themselves textually as the classical compo-
nent executes. However this will result in a flat output. For
QASM-HL output, the instrumentation approach must pre-
serve modularity during execution. For this purpose, the
program is modified to execute in two modes, the quan-
tum mode and the classical mode. In the quantum mode,
the instructions in a module are rewritten into the quan-
tum assembly format, while in the classical mode, the call
paths are followed to determine the next set of modules to
be translated. In particular, we use “procedure cloning” to
create the quantum version of the module from the original
version (denoted as the classical version).

In the quantum mode, each module resolves the sequence
of its quantum operations and quantum data references, by
executing the classical control instructions within it. Once
the quantum operations and their operands are extracted,
they are converted into QASM-HL format and written to
the output file. To achieve this, each quantum operation
is instrumented with a print function that prints the op-
eration type and the resolved data operand references in
the QASM-HL syntax. The function calls to other mod-
ules are also instrumented, but removed in order to prevent
them from executing. Once the instrumentation pass is per-
formed, a dead code elimination pass is used to remove the
dead instructions in the quantum version.

The classical version of a module is instrumented to in-
voke the quantum version of the module, before executing
the function calls contained within it. In this module, the
quantum instructions are removed, leaving only the function
calls intact. To prevent repeated execution of the module,
runtime decision instructions are added at the beginning of
the classical version. We use the technique of memoiza-
tion to determine if the module was executed previously, by
inserting it into a look-up table. As further optimization,
loop iterations that have exactly identical call sequences, in-
cluding their call parameters, are removed so that the call



sequence is executed only once.

5.3 Compilation Speed Comparison
Fig. 5 shows the improvements of the instrumentation-

driven approach over the pass-driven approach in overall
compilation time across the range of all quantum bench-
marks. Results were collected using a 2.27 GHz, Intel Xeon
CPU with 24 MB of shared cache and 126 GB of RAM. For
each benchmark, the compilation time is normalized to the
pass-driven time of the smallest problem size. As problem
sizes increase, the instrumentation-driven approach scales
better than the pass-driven approach. This amounts to sig-
nificant improvements in compilation time for large bench-
marks. For example, for the Triangle Finding Problem with
problem size n = 15, the instrumentation-driven approach
generates QASM-HL code within ⇠ 20 hours, while compi-
lation using the pass-driven approach takes several days.

Figure 5: Improvement in compilation time with the
instrumentation-driven technique over the pass-driven, for
di↵erent problem sizes. Figure is scaled to the pass-driven
time for the smallest problem size. Pass-driven compilation
can be faster for small benchmarks, while instrumentation-
driven compilation supports larger benchmarks. On average,
instrumentation-driven technique is 3X faster.

6. CTQG: CLASSICAL-TO-QUANTUM-
GATE CONVERSION

In many important quantum algorithms a large portion
of modules use only classical reversible logic operations—
operations which can be decomposed into the universal set of
NOT, CNOT and To↵oli gates. These are often called “clas-
sical oracles.”Also, unlike general quantum circuits, classical
oracles can be simulated on a conventional computer allow-
ing a continuous development cycle: 1. write code, 2. test
by simulation, 3. correct bugs (if any). Compiling classical
oracles separately gives an advantage of being able to verify
a significant part of the quantum circuit by simulation.

At the first step of compilation Sca↵CC detects all purely
classical reversible logic modules and compiles them using
CTQG, a sub-compiler converting to flat QASM format.
Later during compilation, these precompiled classical ora-
cles are inserted verbatim into the final code every time a
call to an oracle is encountered. Also CTQG allows code
developers to simulate any oracle on any set of input signals
for verification and debugging purposes.

Many important basic operations such as integer arith-
metic, fixed-point arithmetic, manipulations with bit strings,
allocation of ancilla signals, if-then-else statements and loops
with non-quantum bodies can be expressed solely by means

of classical reversible logic. CTQG uses state-of-the-art built-
in algorithms to compile these operations and pass them as
QASM code to Sca↵CC.

The basic integer arithmetic operations in reversible logic
are a = a+ const, a = a+ b, a = a� b and a = a+ bc where
the variables are integer numbers in standard binary n-bit
representation. For reversible adder and subtracter, CTQG
uses a recently developed algorithm by Cuccaro et al [4]
which uses 6n � 3 CNOT gates, 2n � 2 To↵oli gates and
does not require any ancilla signals at all. That is, CTQG
adder and subtracter have size linear in the bit width of
the arguments. The CTQG integer multiplier uses similar
ideas (see [4]); it has size O(n2) and uses no ancilla signals
either. Using a constant integer expression inevitably re-
quires ancilla signals because reversible logic does not allow
constant ’0’ or ’1’ gates. However CTQG automatically re-
cycles ancillas used for representation of constants that are
no longer needed. For example only 8 ancilla signals (not 24
as with a brute force approach) will be allocated by CTQG
for the module that computes {a = a + 231[11100111]; b =
b+ 219[11011011]; c = c+ 189[10111101]; }.

Fixed-point arithmetic analytic functions such as 1/x, ex,
sinx, cosx and lnx are much harder to implement in re-
versible logic. To the best of our knowledge, there exist no
purely reversible circuits for these functions. CTQG has a
built-in implementation of these functions which uses much
fewer ancillas than a brute force Taylor series approach. For
example for 1/x we use infinite product representation:

1/x = (2�x) ·
�
1+(1�x)2

�
·
�
1+(1�x)4

�
·
�
1+(1�x)8

�
· . . .

which has doubly exponential convergence 8 x 2 [1/2, 1],
and produces O(n2 lnn) gates and O(n lnn) ancillas. For ex,
sinx, cosx and lnx our built-in functions produce O(n3 lnn)
gates and O(n2 lnn) ancillas.

In order to produce if (bit) {body} circuits, we add
bit as an extra control signal to every gate of {body}. This
transforms NOTs to CNOTs, CNOTs to To↵olis, To↵olis
to 3-control To↵olis, etc. Any n-control To↵oli then de-
composes into a number of regular To↵olis. Arbitrary depth
embedded if-then-else decomposes into elementary reversible
gates by applying the above procedure several times.

Generally neither conventional nor reversible circuits can
have loops. However if the maximum number of loop itera-
tions can be predetermined, then the loop can be “unrolled”
producing an amount of gates approximately equal to this
maximum iteration count multiplied by the number of gates
in the loop body. Fig. 6 is an example of a circuit written in
CTQG that computes 1+2+3+ . . .+n for a given iteration
count in a brute force fashion.

#define M 100

module main_ctqg(qint[16] sum, qint[16] i, qint[16] n){
int control_i;
$ i := 1;
$ sum := 0;

for (control_i = 1; control_i <= M; control_i++) {
$if (i <= n)
$ sum += i;

$endif
$ i += 1;

}
}

Figure 6: Sample CTQG code, showing the usage of loops.



CTQG is a one-pass compiler and is able to produce QASM
output gate by gate“on the fly”without remembering any of
the previously produced gates. Thus, it can work on circuits
as large as 1012 - 1013 gates, with the limiting factor being
only the runtime but not the memory size.

7. QUANTUM PROGRAM ANALYSIS
One of the most important uses of a quantum compila-

tion framework is to obtain information about quantum al-
gorithms and their implementation. Programming for quan-
tum devices can be error-prone—one must have good reason
to believe that the intent of the algorithm is reflected cor-
rectly, and that the implementation does not violate the laws
of quantum mechanics. An example is the no-cloning the-
orem, which requires that the state of one qubit cannot be
copied into the state of another while maintaining the first
state [15]. This is a necessary, albeit not su�cient, condi-
tion on the soundness of code. As a result, Sca↵CC uses
aliasing analysis to emit error messages when a programmer
tries to use a multi-qubit gate on the same qubit, since that
quantum state cannot be mapped onto two distinct qubits.

The next sections describe Sca↵CC analyses that not only
help in program validity checks, but also give timing or re-
source estimates for the algorithm’s circuit.

7.1 Entanglement Analysis
Entanglement is a fundamental phenomenon in quantum

mechanics, denoting a logical relation between measured
states of qubits. An example wave function of two entangled
qubits is | +i = (1/

p
2)|00i+(1/

p
2)|11i. It shows that the

measurement states of the two qubits are logically related to
each other. For example if one is measured and collapsed to
state |0i, the other qubit will also collapse to the same state.
This phenomenon is extensively used for logical transforma-
tions of quantum states and for fast communication using
quantum teleportation. Further, it is the key reason behind
exponential speed-up possible with certain forms of quan-
tum computation [10].

Since entanglements a↵ect the final outcome of qubit states,
a view of entanglements occurring within a quantum pro-
gram is useful to the programmer for both designing al-
gorithms and debugging. To analyze the large number of
qubits in a quantum program, we use data flow analysis tech-
niques to automate the process of tracking entanglements.
The entanglement analysis pass in Sca↵CC performs a con-
servative analysis, adding annotations in the output QASM-
HL program to denote entangled qubits. Fig. 7 shows an
example of a module annotated with its entanglements.

Two qubits are entangled when their individual wave func-
tions are inseparable. In reality, determination of entangle-
ment would require precise tracking of quantum states and
transformations of qubits, however a conservative analysis
without knowledge of actual states is possible by tracking
simply the interactions with other qubits. It is based on the
observation that if two qubits interact, they are likely to have
become entangled with each other. Such interactions occur
when multi-qubit operations are performed. In particular, of
the primitive gates allowed by Sca↵old, the CNOT and Tof-
foli operations potentially create entanglement among their
operand qubits. Sca↵CC performs this analysis for qubits
in every module: control and target qubits from multi-qubit
operations are stored in a table as they are encountered
within each module, and the instructions are annotated with

module EQxMark_1_1 ( qbit* b , qbit* t ) {
...
Toffoli ( x[0] , b[1] , b[0] );
// x0, b1, b0
Toffoli ( x[1] , x[0] , b[2] );
// x1, x0, b2, b1, b0
Toffoli ( x[2] , x[1] , b[3] );
// x2, x1, b3, x0, b2, b1, b0
Toffoli ( x[3] , x[2] , b[4] );
// x3, x2, b4, x1, b3, x0, b2, b1, b0
CNOT ( t[0] , x[3] );
// t0, x3, x2, b4, x1, b3, x0, b2, b1, b0
Toffoli ( x[3] , x[2] , b[4] ); // x3
Toffoli ( x[2] , x[1] , b[3] ); // x2
Toffoli ( x[1] , x[0] , b[2] ); // x1
Toffoli ( x[0] , b[1] , b[0] ); // x0
...

}

// Final entanglements:
// (t0, b4, b3, b2, b1, b0);

Figure 7: Entanglement Annotations in EQxMark module
of Grover’s Search Program. Entanglements are added as a
comment to every instruction that creates them.

these pairs. Since the entanglement property is symmetric,
reflexive and transitive, the previous entanglements of the
control and target qubits are also added to the annotations.

In addition to compute instructions, quantum programs
also contain uncompute instructions to reverse state changes
of ancilla qubits. The CNOT and To↵oli operations are
inverse functions of themselves; therefore they create dis-
entanglements when reapplied to the same set of control
and target qubits. Thus, entanglement analysis also involves
tracking of uncompute portions in a module.

To be able to identify disentanglements, sets of control
and target qubits are stored along with a timestamp for
each gate. When the same gate with the same set of (target,
control) qubits is re-encountered, the control qubits are ex-
amined for state changes since the timestamp of the original
instruction. Changes are determined by whether the qubits
served as target qubits in other instructions. If any changes
were determined since the entangled instruction, the (tar-
get, control) pair is retained in the table, along with the new
pair and timestamp. Otherwise, the instruction is marked
as a reverse operation, and a disentanglement is recorded.
This removes the (target, control) entries from the table.
As a consequence, if the set of control qubits for a target
qubit becomes empty, it is assumed to have been restored to
its original state, and is removed from the set of entangled
qubits. Fig. 8 illustrates this process to determine the entan-
glements and disentanglements for a small example circuit
with two data qubits and two ancilla qubits.

Disentangled qubit check: This analysis enables the
addition of an important quantum program check, which we
call the disentangled qubit check, to track abandoned qubits
in a program. When ancilla qubits are not uncomputed,
their wave functions stay integrated with the wave func-
tions of data qubits. This interferes with the probabilities
of measured states of data qubits, which may eventually re-
sult in incorrect outputs. To avoid these side-e↵ects, for
every module in a quantum program, each newly instanti-
ated qubit must have been either uncomputed or measured
at the end of the operation. At the end of entanglement
analysis over each module, Sca↵CC examines the final en-
tanglements. On encountering a module that has remnant
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Figure 8: Example entanglement analysis of a quantum circuit that operates on two data qubits d1 and d2, using two ancilla
qubits a1 and a2. The final set of entanglements realized by the circuit is (d1, d2).

ancillas in the list of final entanglements, a non-uncomputed
qubit warning is generated.

7.2 Resource Analysis
The high implementation cost of qubits and operations

underscores the importance of a program analysis which can
quickly calculate the number of resources consumed by that
program. This number can serve as an early comparison
of the resource requirements of di↵erent algorithms before
implementation on a physical device, as well as a form of
feedback to other parts of the compiler (e.g as discussed in
7.4). Qubits remain the most expensive resources in quan-
tum computing, but the number of gates also matters – more
gates increase the likelihood of error, thus requiring more er-
ror correction which in turn requires more qubits.

Resource analysis as a form of whole-program analysis can
also be carried out using pass-driven and instrumentation-
driven approaches, similar to what was discussed in Section
5. In this case, either an additional compiler pass would
count the number of qubits and operations on the LLVM-IR
code, or instrumentation would yield a program which upon
execution collects its own resources. The instrumentation-
driven approach again performs better for larger problems.

This approach is slightly di↵erent in the case of resource
estimation — quantum operations are converted into incre-
ment operators that count the occurrences of each gate on a
per-module basis and add them recursively to their parent
modules. However, since quantum algorithms can contain
on the order of trillions of operations, it would be ine�cient
to traverse all operations individually. Memoization can be
used here too to exploit program modularity, but with the
goal of preventing repeated same-module calls; this speeds
resource analysis. This memoization requires the previously-
mentioned look-up table to be expanded into a hash table
that also records the counts of di↵erent resources. All hash
table entries are populated on the first execution of each
unique version of a quantum circuit module. For all sub-
sequent calls, if the module and its call parameters match
an entry in the table, the previously calculated results are
used, without recalculation. This is possible because proce-
dure calls in the Sca↵old language do not have side-e↵ects
on the number of resources within each procedure. Table 1
depicts an instance of this table for the example in Fig. 4.

7.3 Timing Analysis
Even if the compiler has no knowledge about a hard-

ware implementation’s resource constraints, high-level tim-

Table 1: Memoization hash-table for speeding up resource
analysis for the example in Fig. 4.

Resources
Module IntegerParam DoubleParam

Qubit X Z H T

main 0 0 2 400 27800 54300 55100
Oracle 0 0 0 1 76 137 140
Oracle 1 0 0 1 65 130 132
Oracle 2 0 0 1 64 142 142
Oracle 3 0 0 1 73 134 137

ing analysis can estimate the circuit’s critical path length by
reordering instructions in order to optimize the logical cir-
cuit’s length. For a given sequence of quantum instructions,
Sca↵CC performs a hierarchical critical path estimation,
which involves the scheduling of instructions with the as-
sumption of unbounded quantum resources. The no-cloning
theorem enforces a data dependency between quantum in-
structions when they share one or more operands (there is
no di↵erence between reads or writes, contrary to classical
computing.) Adhering to these dependencies, the critical
path timing analysis schedules operations by reordering in-
structions in as-soon-as-possible (ASAP) order.

Since the quantum program traces can be exceedingly
large, we take advantage of modularity to arrive at a critical
time estimate. The algorithm proceeds in postorder of the
call graph of the program, processing leaf modules before the
non-leaf ones. Algorithm 1 describes the analysis. It uses
a last timestep table to keep track of the latest timestep in
which a qubit was scheduled in an operation. Traversing in-
structions of a leaf module in program order, a last timestep
table lookup is performed for all operands of an instruction,
since each operand may represent a data dependency. This
instruction is then scheduled in the earliest timestep possi-
ble, resulting in an update in the last timestep data for its
operands. Once all instructions in a module are processed,
its last timestep data is stored, referencing each operand by
its argument number for modular analysis.

For a non-leaf module, the algorithm proceeds in a similar
manner, except that when a module invocation instruction
parameterized with qubit arguments is encountered, the ar-
guments are treated as its operands. The last timestep table
is examined to determine the earliest timestep the module
can be scheduled to start. The values from the last timestep
table of invoked module are added to that of the invok-
ing module, increasing the critical path length for the in-
struction’s operands by the pre-computed value. Once all
modules are processed, the schedule length obtained is the



estimated critical path length.

for each module M in post-order of program’s callgraph do

for each instruction I do

// Determine earliest timestep in which

// the operation can be performed

for each operand oi do

get last timestep[M ][oi]

end

lt = max(last timestep[M ][oi])

end

if I is a quantum primitive then

Schedule I in timestep lt+1

//Update last timestep table

for each operand oi do

last timestep[M ][oi] = lt+1

end

else

//I is a module invocation

Schedule module to start execution in timesteplt

for each operand oi do

last timestep[M ][oi] = last timestep[I][oi]+lt

end

end

end

Algorithm 1: Modular estimation of critical time.

7.4 Remodularization
Timing analysis of large-scale quantum programs requires

scalable algorithms that make use of the modularity of a
program to avoid repetitive analysis and improve analysis
time. However, this comes at the cost of decreased sched-
ule optimality. For example, parallelism between module
boundaries can be overlooked in non-flattened sequences of
instructions. Fig. 9 depicts this loss of parallelism with an
example. To strike a balance between modularity and opti-
mizability, we perform remodularization of the input quan-
tum program. The process involves inlining modules that
are too small for optimization, into their respective call sites,
and obtaining larger flattened modules. We define a thresh-
old for module size in terms of the number of quantum gates
it contains. Informed about module sizes from resource esti-
mation analysis, a remodularization pass in Sca↵CC flattens
the modules that are smaller than the threshold. Fig. 10
shows how the estimated critical path gets better with more
flattening as more inter-modular parallelism gets discovered.
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Figure 9: The e↵ect of a modular algorithm on critical
path analysis. Lost parallelism in module boundaries causes
longer reported critical paths.
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Figure 10: The e↵ect of modularity on circuits’ critical time
estimate for the case of the BWT(n=300, s=1000) bench-
mark. More circuit flattening (modular inlining) causes
shorter (closer to real) reported critical paths, at the cost
of longer analysis time.

8. RELATED WORK
Many previous works on high-level quantum programming

have focused on the design of programming languages rather
than compiler design. Programming languages based on
C [16] and Haskell [1, 6] have been proposed for quantum
computing applications specifically to facilitate development
of correct quantum algorithms. In contrast, Sca↵CC is a
compiler e↵ort that studies and develops compiler strate-
gies for e�cient quantum compilation and analysis. In par-
ticular Sca↵CC di↵erentiates itself through two objectives:
generation of tractable quantum assembly code that is also
amenable to aggressive low-level optimizations; and logical
program analyses at full program scale. Similar to Quipper
as proposed by Green et. al. [6], the Sca↵CC compiler han-
dles program scale by making heavy use of modularization.
Additionally, Sca↵CC recognizes the implications of the de-
gree of modularity on both e�ciency and quality of compi-
lation, and presents scalable techniques to achieve both.

Moreover, this paper presents a first study in the trade-o↵
between modular inlining and critical-time estimation accu-
racy. Although other papers envision the prospect of the
QASM language being an extension of conventional classical
assembly languages extended with a quantum instruction set
[5, 17], to the best of our knowledge none have implemented
large circuits using this format and studied the trade-o↵s
between manageability and optimizability.

Our work in CTQG is a pioneering e↵ort to create a C-
language-like reversible logic compiler for quantum circuits.
Although other tools exist which work on small circuits and
try to find optimal decompositions into reversible gates [25],
similar to [6] our compiler scales to arbitrary size problems
but also includes a state-of-the-art algorithm for synthesis of
integer arithmetic which generates no ancilla signals, a well-
optimized library of fixed-point analytic functions and an
automatic ancilla manager which significantly reduces the
use of ancillas in comparison to a brute-force approach.

Previous work has enabled resource analysis as part of
algorithm development [6, 16]. Sca↵CC expands its analy-
sis toolbox with other useful analyses such as entanglement
and timing analysis. The analysis framework can be eas-
ily extended further. For example, Metodi et al. [14] pro-
pose a useful reliability analysis in circuits, whose results
can be compared with the reliability goal of the hardware



and used to determine circuit locations in need of error cor-
rection. Techniques for exact entanglement analysis have
been previously proposed in [18, 19]. Perdrix [18] has devel-
oped typed language extensions for abstract interpretation
of entanglements in quantum data arrays, while Prost and
Zerrari [19] have proposed formal semantics for identifying
entanglements in higher order functions. Sca↵CC performs a
conservative and modular entanglement analysis at a purely
logical level. This is intended to aid both design and de-
bugging of quantum algorithms, which benefit from an un-
derstanding of where entanglements are potentially created
and removed in a program. Furthermore, Schuchman and
Vijaykumar [21] identify a program transformation which
exploits parallelism between computation and uncomputa-
tion portions of a program, albeit at the cost of increased
qubits. This transformation can easily be added to Sca↵CC
due to its tracking of uncompute regions.

9. CONCLUSION
This paper has examined the issues concerning the high-

level compilation of quantum circuits. We showed the pos-
sibility of compiling large-scale applications, with the appli-
cability of some previous classical techniques and also op-
portunities for exploiting the dual classical-quantum nature
of programs for keeping the compilation process tractable.
Methods for program correctness checking as well as a novel
approach to reversible-logic synthesis were proposed, and
the trade-o↵ between optimality and speed in circuit timing
analysis was discussed. These form a stepping stone towards
e�cient mapping of quantum algorithms onto physical quan-
tum computers in the future.
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