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Abstract—Simulating the time evolution of a physical system
at quantum mechanical levels of detail — known as Hamil-
tonian Simulation (HS) — is an important and interesting
problem across physics and chemistry. For this task, algorithms
that run on quantum computers are known to be exponen-
tially faster than classical algorithms; in fact, this application
motivated Feynman to propose the construction of quantum
computers. Nonetheless, there are challenges in reaching this
performance potential.

Prior work has focused on compiling circuits (quantum
programs) for HS with the goal of maximizing either accuracy
or gate cancellation. Our work proposes a compilation strategy
that simultaneously advances both goals. At a high level, we use
classical optimizations such as graph coloring and travelling
salesperson to order the execution of quantum programs.
Specifically, we group together mutually commuting terms in
the Hamiltonian (a matrix characterizing the quantum me-
chanical system) to improve the accuracy of the simulation. We
then rearrange the terms within each group to maximize gate
cancellation in the final quantum circuit. These optimizations
work together to improve HS performance and result in an
average 40% reduction in circuit depth. This work advances
the frontier of HS which in turn can advance physical and
chemical modeling in both basic and applied sciences.

Keywords-quantum computing; compilation; program order-
ing; Hamiltonian simulation

I. INTRODUCTION

The development of quantum computers is advancing

rapidly. During the last decade, quantum computing (QC)

systems comprised of tens of qubits were brought online for

the first time [1]–[3]. Although information processing on

these devices is noisy and error-prone, successful execution

of several quantum algorithms — including a demonstration

of quantum supremacy — has been achieved [1], [4]–[7].

This paper focuses on Hamiltonian simulation (HS) which

is used for simulating the time evolution dynamics of a

physical system at quantum mechanical detail [8]. This type

of simulation was the original motivation behind Feynman’s

proposal of QC [9]. Lloyd [8] later proved that quantum
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Figure 1: A summary of the Hamiltonian simulation compi-

lation process and the max-commute-tsp ordering strategy.

computers are indeed efficient simulators of quantum sys-

tems, implying an exponential separation between quan-

tum and classical algorithms for this problem. When at-

scale, fault-tolerant QCs are available, they are expected to

efficiently simulate the dynamics of classically intractable

chemical and physical systems [10], [11]. HS offers the po-

tential to reveal physical and chemical processes important

to materials research, pharmaceuticals, and more [12]–[14].

While HS is promising in theory, key challenges in

its uptake lie in demonstrating accurate and tractable HS

execution on current QCs. For current Noisy Intermediate-

Scale Quantum (NISQ) [15] computers, their limited scale

precludes the execution of large HS instances, and their

noisy operation impedes accuracy.

To implement HS on a quantum computer, one needs

to specify a particular problem instance (e.g., selecting a

specific molecule or defining an optimization objective) in

terms of a Hamiltonian—a characteristic matrix describing

the system of interest. Then, the quantum circuit (i.e.,

quantum program) that simulates the system is compiled via
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three steps: mapping, ordering, and Trotterization, shown

in Fig. 1. The goal of the mapping step is to produce

a Hamiltonian specified as a sum of Pauli terms (tensor

products of Pauli matrices, more details in Sec. II-B) which

act on the qubits of the quantum computer, although the

specifics may vary depending on the use case.

The quantum computer executes the HS by sequentially

simulating each Pauli term in the order that it appears in the

summation produced during the mapping step. While any

ordering is theoretically viable, some orderings have very

poor performance or accuracy given current QC constraints.

Thus, the purpose of the ordering step is to sort the Pauli

terms with the goal of (i) minimizing the depth (i.e., quantum

operation count or runtime) of the resulting quantum circuit

and (ii) maximizing the accuracy of the simulation. This is

analogous to the ordering of floating point operations or ba-

sic block scheduling performed by classical compilers [16].

Prior work has explored the impact that term order has on

the quality of the simulation, and finding tighter bounds on

the simulation error remains an open problem [17]–[20].

Additionally, the impact of term ordering on the gate count

requirements for the simulation circuits has also been studied

[21], [22].

Finally, the last step in the circuit compilation is Trot-
terization which iteratively constructs the quantum circuit

according to the Suzuki-Trotter decomposition [23].

While prior works offered theoretical advances, their term

ordering strategies focused solely on either accuracy or gate

cancellation. Our work highlights the importance of both of

these factors and applies classical optimization techniques to

compile quantum circuits which are both short and accurate.

We improve the execution of HS circuits by developing

methods to mitigate both physical and algorithmic errors.

Physical errors stem from the fact that gate operations on

NISQ processors are noisy. Two instances of the same HS

problem compiled with different term orderings can result

in quantum circuits of different lengths. The shorter circuit

contains fewer noisy operations and will, therefore, have a

higher probability of successful execution. Even in the fault-

tolerant (i.e., error-corrected) regime, where gate operations

are noiseless, compilations which produce shorter circuits

are still desirable since depth is proportional to runtime.

Algorithmic errors appear in the Trotterization step (covered

in detail in Sec. II-B) because the continuous time evolution

that we wish to simulate must be discretized before it can

be implemented on a quantum computer. This discretization

is only an approximation of the true evolution. Prior work

as well as our results indicate that the order in which the

Pauli terms are simulated can significantly impact the error

of this approximation.

Our strategy (summarized in Fig. 1) for optimizing the

program order of the simulation is based on two key insights.

First, the algorithmic error associated with the Trotterization

step is due to non-commuting Pauli terms within the

Hamiltonian. Noticing this, we mitigate the algorithmic error

by grouping together Pauli terms which commute with one

another. We decide the grouping by constructing a graph that

indicates which Pauli terms commute with one another, and

then find a minimum clique cover on this graph. The second

insight follows from the first, namely, once the Pauli terms

are partitioned into mutually commuting groups, the terms
within each group can be rearranged without incurring
any additional algorithmic error. We choose to arrange

the Pauli terms within each group to maximize the amount

of gate cancellation in the final circuit. This is accomplished

by finding a travelling salesperson path through each group

which places similar Pauli terms next to each other, thus

increasing the amount of gate cancellation.

These compilation techniques incorporate both classical

optimizations and full-stack knowledge from application to

hardware which improves the performance of Hamiltonian

simulation. This approach has proven successful in previous

work targeting the Variational Quantum Eigensolver (a quan-

tum algorithm which can be considered a specialized case

of HS [24], [25]) [26]–[28]. Furthermore, considering the

physics at the hardware level — the QC must discretize the

simulation to handle non-commuting Pauli terms — guides

our optimizations at the compiler level: grouping together

commuting Pauli terms. Going in the other direction, we use

the compiler to optimize for short circuits which fit within

the limits set by the capabilities of the underlying hardware.

In this paper we consider simulation and experiments for

molecular Hamiltonians because they are a relevant and

important application and also easily obtainable via the

NIST Chemistry WebBook [29] and OpenFermion software

package [30].

Our contributions in this work include:

• A new term ordering strategy, max-commute-tsp, which

simultaneously mitigates both physical and algorith-
mic errors.

• Simulation and experimental results which demonstrate

an average 40% reduction in circuit depth and high-

light the importance of both gate cancellation and
simulation accuracy for good overall performance.

• A general, open-source implementation of HS which

can be of use to the QC community as a challenging

and practical benchmark.

The rest of the paper is organized as follows. An overview

of HS is given in Sec. II. Prior ordering strategies and com-

pilation techniques are discussed in Sec. III and a detailed

description of max-commute-tsp is presented in Sec. IV. Our

benchmarking methodology is given in Sec. V and Sec. VI

contains the results of our simulations and the evaluations on

trapped ion quantum computers. In Sec. VII we discuss our

results as well as future work on analyzing HS performance

in regimes beyond quantum chemistry.
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Figure 2: Dissecting a quantum circuit for simulating the

evolution of H = αXXX + βXZZ. The red dotted line

separates the two subcircuits implementing each individual

term. The full circuit implements the evolution unitary U =
U2U1 = e−iβXZZe−iαXXX .

II. HAMILTONIAN SIMULATION

Simulating quantum systems is a general problem with

important applications in physics, chemistry, and biology.

Many supercomputer hours are spent simulating different

molecules and materials each year [31]. With the recent

development of quantum computers, and because they are

efficient simulators of quantum systems, it is expected that

these simulation problems will be among the most promising

applications for quantum advantage [11]. However, it is

likely that the simulation of classically-intractable systems

will require a fault-tolerant quantum computer [10]. Despite

this, Hamiltonian simulation is still used throughout many

near-term NISQ algorithms for machine learning and other

optimization applications. For the remainder of this paper,

we choose to consider Hamiltonian simulation within the

specific context of simulating molecular dynamics. Our

compilation methods can be further applied wherever one

wishes to simulate a Hamiltonian written as a sum of Pauli

terms.

A. The Simulation Problem

To illustrate Hamiltonian simulation, assume we wish to

study a time-dependent quantum system, |ψ(t)〉, such as an

atom or molecule. The time evolution of this system will

be described by a matrix, H , called the Hamiltonian whose

eigenvalues are the allowed energy levels of the system. If

the initial state of the system is |ψ(0)〉, then the state at a

later time is given by the equation

|ψ(t)〉 = U |ψ(0)〉 = e−iHt |ψ(0)〉 . (1)

The simulation problem is solved by computing the unitary

evolution matrix U . In general, this is a difficult task because

the size of the Hamiltonian grows exponentially with the size

of the system.

B. Quantum Circuits for Hamiltonian Simulation

Exponential scaling with system size is characteristic of

quantum mechanics, and it is one of the main reasons

why classical methods for solving quantum problems are

intractable. However, a quantum computer is capable of

representing exponentially large state vectors and evolu-

tion matrices using polynomially many qubits and gate

operations. Below, we describe the compilation process for

constructing the simulation circuits.

Mapping – The molecular Hamiltonians considered here

are typically written in terms of fermionic operators which

must be mapped to operators that act on qubits [32], [33].

The Hamiltonian can then be written as a sum of Pauli terms:

H =

N∑
i=1

ciPi. (2)

Here, ci ∈ R and the Pauli terms, Pi, are tensor products of

the Pauli matrices with length equal to the number of qubits.

Pi =

nq⊗
n=1

mn where mn ∈ {I,X, Y, Z}

Ordering – A quantum computer simulates the evolution

Eq. (1) under a Hamiltonian Eq. (2) by sequentially simu-

lating each of the individual terms ciPi. Any ordering of the

Pauli terms is valid, but some orderings are able to mitigate

physical and algorithmic errors more effectively than others.

Although the simulation error’s dependence on term ordering

has been studied extensively [18], [20], [34], finding tight

bounds on the error remains an open problem [17], [35]. In

addition, the gate requirements for Hamiltonian simulation

circuits and numerous circuit optimizations have also been

studied, and have shown that different orderings can have

different amounts of gate cancellation [10], [22], [36].

In this work, we consider a number of different compila-

tion methods including lexicographic [21], [22], magnitude
[21], [22], depleteGroups [20], random, and our newly-

proposed max-commute-tsp term orderings. An overview

of each of these strategies is given in Sec. III and max-
commute-tsp is discussed in detail in Sec. IV.

Trotterization – Once the Hamiltonian has been generated

and an ordering is selected, a quantum circuit is constructed

which implements the evolution unitary U in Eq. (1). Impor-

tantly, if all of the terms in H commute with one another,

then U can immediately be written as a product of individual

terms

U = e−iHt = e−ic1P1te−ic2P2t . . . e−icNPN t

if PjPk = PkPj , ∀j, k ∈ [N ].

In general, however, real-world Hamiltonians may contain

non-commuting terms. In this case, we can use the Suzuki-

Trotter decomposition [23] to break the evolution of non-

commuting terms into many small time steps to approximate

the total evolution unitary [37]:

e−iHt ≈ (e−ic1P1Δte−ic2P2Δt . . . e−icNPNΔt)t/Δt+O(tΔt).
(3)

We denote t/Δt = r as the Trotter number. The product

of exponentials in Eq. (3) can be represented as a single

quantum circuit, repeated r times, while the remaining

3
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O(tΔt) = O(t2/r) terms, referred to as the Trotter error,

is the algorithmic error associated with the Trotterization

process. As r → ∞ the Trotter error vanishes and the

quantum simulation becomes exact, but this comes at a cost

of increasing circuit depth.

Eq. (3) is an example of a first-order Trotter decomposi-

tion; higher order decompositions also exist which further

improve the accuracy of the approximation (see Sec. 4.7

of [38]), however, for simplicity we consider only the first-

order decomposition in this paper.

Fig. 2 shows a simulation circuit for an example Hamil-

tonian. Both terms require single-qubit gates to rotate each

qubit into the computational basis. The parity of the qubits

is then computed by performing a CNOT, controlled by

a data qubit and targeting an ancilla qubit, for each Pauli

matrix in the Pauli term. Another method for computing the

parity uses a ladder of CNOTs between nearest neighbors

to compute the parity. We choose to use the former method

even though it introduces a single ancilla overhead because

it allows for additional gate cancellations which are not

possible with the ladder implementation.

III. PRIOR TERM ORDERING STRATEGIES

Prior work has studied the use of commutativity at the

circuit level to optimize the gate counts for the Quantum

Approximate Optimization Algorithm (QAOA) [39] and

more general quantum circuits [40]. The optimizations in

[39] are complementary to the techniques discussed in this

paper which operate at the abstraction level of Pauli terms

to minimize errors before the application is compiled down

into a quantum circuit. In addition, we list here a variety

of ordering strategies which have been introduced and their

impact on Trotter error or gate costs studied in previous

work.

Lexicographic – Prior work has proposed and improved

the lexicographic ordering which orders Pauli terms al-

phabetically to achieve high levels of gate cancellation

[21], [22]. The lexicographic ordering can produce circuits

with shorter depth since consecutive Pauli terms which

act on the same qubit with the same Pauli matrix result

in single- and two-qubit gates cancelling at the interface

between the two terms (see Fig. 2). Although this ordering

produces short circuits, it does nothing to mitigate Trotter

(algorithmic) errors and therefore a larger Trotter number

(i.e., longer circuits) will be required to attain high accuracy.

Additionally, Sec. IV-B introduces a pathological example

where the circuits produced by a lexicographic ordering are

asymptotically equivalent to no gate cancellation at all.

Magnitude – Prior work also considered sorting the Pauli

terms according to the magnitude of their coefficients in

Eq. (2) in descending order [21], [22]. Interestingly, the

magnitude ordering can produce simulation circuits with

very low Trotter error, often outperforming the analytically

computed bounds on the Trotter error. Tranter et al. [20]

suggest that the superior accuracy of the magnitude strategy

may be attributable to simulating the terms with large coeffi-

cients earlier in the circuit and so they cannot compound any

errors that occur later on. Despite the low algorithmic errors

of a magnitude ordering, the resulting circuits will be quite

deep because this ordering does not utilize any information

related to gate cancellations between terms.

DepleteGroups – The depleteGroups strategy was pro-

posed by Tranter et al. [20], which also partitions the Pauli

terms into groups where every term commutes with every

other term within the group. Once the Pauli terms are

grouped into mutually commuting cliques, the final ordering

is produced by iteratively selecting the highest magnitude

term from each clique until all the groups have been ex-

hausted, which is the opposite of the approach described in

Sec. IV.

Random – We also consider a random ordering of the

Pauli terms to serve as a baseline for comparison. Random

term orderings were also used by Childs et. al. [18] to prove

stronger bounds on the size of the Trotter error.

IV. MAX-COMMUTE-TSP

As shown in Fig. 1, the max-commute-tsp ordering is com-

posed of three parts. This algorithm sorts the Hamiltonian

by first grouping the Pauli terms into mutually commuting

cliques. It then orders the terms within each clique according

to a travelling salesperson (TSP) heuristic before heuristi-

cally selecting a permutation of the cliques. The following

sections describe each of these steps and also motivate why

max-commute-tsp is able to mitigate both the physical and

algorithmic errors in Hamiltonian simulation.

A. Term Grouping to Mitigate Trotter Errors

The first step in the max-commute-tsp ordering is to con-

struct a commutation graph. The nodes of the commutation

graph represent the Pauli terms of the Hamiltonian, and

an edge exists between every pair of Pauli terms which

commute with one another. The terms are then grouped

into a minimum number of mutually commuting cliques that

cover the entire graph.

Recall that a quantum computer is only able to carry out

the Hamiltonian simulation by Trotterizing the continuous

evolution [23]. This Trotterization step is required to deal

with non-commuting terms in the Hamiltonian and incurs

Trotter errors, as discussed in Sec. II. In practice, some

of the Trotter errors may be avoided by grouping as many

commuting terms together as possible.

Theoretical Analysis of Commutation Groupings – We

illustrate the effectiveness of the group commutation order-

ing strategy with an example Hamiltonian containing two

commuting cliques. The analysis can be generalized to more

commutation groups by the reader. Consider a Hamiltonian

H =
∑k

i=1 αiHi, where ai are real numbers and Hi are

simple Hamiltonians that can be mapped to quantum circuits

4
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Figure 3: An example showing the gate cancellations that

are available with (a) lexicographic and (b) TSP orderings.

(or diagonalized) directly. Suppose H can be divided into

two commuting groups (cliques) Hc
1 =

∑p
m=1Hm and

Hc
2 =

∑k
m=p+1Hm, i.e., [Hm, Hn] = 0 if 0 < m,n ≤ p

or p < m, n ≤ k. We compare the Trotter error of a term

grouping strategy against other orderings below.

For a group commutation ordering of H , it has been

shown that the approximation error (in the additive form)

of the Lie-Trotter formula is given by the variation-of-

parameters formula [34], [41], [42],

δgc = e−it(Hc
1)e−it(Hc

2) − e−itH

=

∫ t

0

dτe−i(t−τ)H [e−iτHc
1 , Hc

2 ]e
τHc

2 . (4)

Note that the error form also applies to general Hg where

Hg = Hg
1 + Hg

2 . For simplicity, we denote the integral in

Eq. (4) as I(Hg
1 , H

g
2 ) for general Hg

1 , H
g
2 . Thus, we can

simply write the approximation error as δgc = I(Hc
1 , H

c
2).

We are interested primarily in the operator norm (i.e.,
spectral norm) of ||δgc|| = ||I(Hc

1 , H
c
2)||, which gives the

worst-case analysis of the error.

We can recursively apply the error formula in Eq. (4) to

the Lie-Trotter formula for an arbitrary ordering of H . Let π
be a permutation of the set {1, .., p} that defines the ordering.

First, we can approximate e−itH by separating Hπ(1) from

other terms:

δ1 = e−itHπ(1)e−it
∑k

m=2 Hπ(m) − e−itH

= I(Hπ(1),
k∑

m=2

Hπ(m)).

Then we can recursively repeat the process for the rest of

the Hamiltonian and arrive at the following expression for

the approximation error δ of the Lie-Trotter formula.

δngc = e−itHπ(1)e−itHπ(2) ...e−itHπ(2) − e−itH

= I(Hπ(1),

p∑
m=2

Hπ(m)) + e−itHπ(1)I(Hπ(2),

p∑
m=3

Hπ(m))

+ e−itHπ(1)e−itHπ(2)I(Hπ(3),

p∑
m=4

Hπ(m)) + ...

+ e−itHπ(1) ...e−itHπ(j)I(Hπ(j+1),

p∑
m=j+2

Hπ(m)) + ...

Using the triangle inequality and the submultiplicativity of

the operator norm, together with the fact that the operator

norm of a unitary is 1, we have

||δngc|| ≈ ||I(Hπ(1),

p∑
m=2

Hπ(m)) + I(Hπ(2),

p∑
m=3

Hπ(m))

+ ...+ I(Hπ(j+1),

p∑
m=j+2

Hπ(m)) + ...||.

Also we know that Hπ(k) is either in Hc
1 or Hc

2 . Thus,

we have

||δngc|| ≈ ||
∑

π(j)∈[1,p]
I(Hπ(j), H

c
2)||+

||
∑

π(j)∈[p+1,k]

I(Hπ(j), H
c
1)||.

Although we have no proof that ||δgc|| < ||δngc|| (because

we do not have information about the full commutation

relation and magnitude information in H), we can, however,

make several observations why group commutation ordering

is advantageous. First, ||δgc|| in general has a much lower

upper bound than does the first term in ||δngc||. In fact,

the upper bound of ||δgc|| does not scale with the number

of terms p while ||I(Hπ(1),
∑p

m=2Hπ(m))|| is of O(p).
Second, ||δgc|| does not include the second term in ||δngc||.
Thus, there is strong evidence that group commutation
ordering has an advantage over naive ordering in terms of

eliminating Trotter errors.
Algorithms for Min-Clique-Cover – Partitioning the com-

mutation graph of a quantum Hamiltonian has been pro-

posed for other quantum computing applications, including

Hamiltonian simulation [25] and minimizing the number of

measurements required in variational algorithms such as the

Variational Quantum Eigensolver [26]–[28].
The minimum clique cover problem is NP-Complete [43].

Fortunately, we do not require the exact min-clique-cover

solution for the purpose of this work since approximate

solutions are able to effectively mitigate both algorithmic

and physical errors. The commutation graphs produced by

real-world applications (especially molecular Hamiltonians)

tend to be highly structured allowing for reasonably good

solutions to be found in time scaling like O(N2) or O(N3)
for a graph with N nodes [44]–[46].

5
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B. Travelling Salesperson For Gate Cancellation

Because the terms within each clique commute with one

another, they can be rearranged at will without incurring any

additional Trotter error. Therefore, the Pauli terms within

cliques can be sorted into an order which maximizes gate

cancellation without the worry of degrading the accuracy of

the simulation.

We frame the question of ordering the Pauli terms within

cliques as an instance of the Travelling Salesperson problem.

Recall the example simulation circuit in Fig. 2, we charac-

terize the potential for gate cancellation between two terms

using the following principles:

• Two CNOT gates with the same target and control

qubits can be cancelled so long as no single-qubit gates

lie between them.

• Sequential Pauli terms which act on the same qubits

with the same Pauli matrix will be able to cancel the

basis rotation single-qubit gates between them.

According to these gate cancellation principles, it will

be favorable to place two Pauli terms next to each other

if they operate on the same qubits with the same Pauli

matrices. This can be framed as an instance of the Travelling

Salesperson problem, where instead of distance travelled the

cost function is the number of two-qubit gates in the final

circuit.

We focus primarily on the cancellation of two-qubit gates,

because they are the dominant source of errors and latency

in the prevalent quantum platforms. Typically, CNOT gates

have at least 10x lower fidelity and 2–5x longer duration

than single-qubit gates [47], [48].

Defining the TSP Instance – The TSP objective is to

order a set of k Pauli terms, {P1, P2, ..., Pk}, such that the

number of CNOT gates in the resulting circuit is minimized.

Every Pauli term within the Hamiltonian corresponds

to a subcircuit implemented on the quantum computer.

Within a Pauli term, each non-I Pauli matrix generates

two identical CNOTs (one for parity-compute, the other for

parity-uncompute). For example, the Pauli term: XZZ in

Fig. 2 has a total of 6 CNOTs in its subcircuit because it

has three non-I Pauli matrices. These CNOTs are controlled

on the m-th qubit (where m = the index of the Pauli matrix

within the Pauli term) and target the ancilla qubit. Without

any gate cancellation, the number of CNOT gates required

to implement the simulation circuit for a Hamiltonian,

H =
∑k

j=1 cjPj , is

2
k∑

j=1

|Pj |Ham = 2

k∑
j=1

N∑
i=1

�Pj [i]�=I , (5)

where N denotes the width of the Pauli terms and Ham

refers to Hamming weight.

A good permutation, however, can substantially reduce

the number of required CNOTs compared to Eq. (5)’s upper

bound because the CNOT gates between neighboring Pauli

term subcircuits can cancel with one another. Using the gate

cancellation principles listed above, we define the CNOT

distance between two Pauli terms as

|P1 − P2|CNOT := |P1 − P2|Ham +
∑
i∈[N ]

�I �=P1[i]�=P2[i]�=I

=
∑
i∈[N ]

�P1[i]�=P2[i](1 + �I �∈{P1[i],P2[i]}).

(6)

This distance reports the number of CNOTs needed to

implement the transition from the parity-uncompute zone

of the P1 subcircuit through the parity-compute zone of the

P2 subcircuit, after all possible gates have been cancelled.

The TSP instance is then defined as: given a graph, with

nodes representing Pauli terms and edges between nodes

weighted according to the CNOT distance, find the shortest

cycle which visits each vertex once. To be precise, we

actually desire the shortest Hamiltonian path, e.g., we want

to visit each Pauli term once, without returning to the start.

This is accomplished by generating the TSP cycle and then

deleting the most expensive edge in the path.

Approximating TSP – Solving TSP in the most general

setting is NP-hard. Moreover, no polynomial-time algo-

rithms exist which are guaranteed to approximate it to a

constant ratio [49]. In the case of metric graphs, however,

TSP can be efficiently 1.5-approximated via Christofides’

algorithm, meaning that the approximation will return an

ordering that requires at most 1.5x as many CNOTs as the

optimal ordering [50]. In addition, Christofides’ algorithm

is fast, running in O(k3) time, and it is known to perform

well in practice, often attaining near-optimal solutions [51].

We now prove that the graph defined by the |P1−P2|CNOT

distance function is a metric graph. We have already seen

that it is symmetric in its arguments (i.e., the graph is

undirected), so we need only show that it satisfies the

triangle inequality:

|P1 − P2|CNOT + |P2 − P3|CNOT − |P1 − P3|CNOT ≥ 0.

Expanding this expression we obtain:

|P1 − P2|CNOT + |P2 − P3|CNOT − |P1 − P3|CNOT

=
∑
i∈[N ]

�P1[i]�=P2[i](1 + �I �∈{P1[i],P2[i]})

+�P2[i]�=P3[i](1 + �I �∈{P2[i],P3[i]})
−�P1[i]�=P3[i](1 + �I �∈{P1[i],P3[i]}).

(7)

We will prove that each three-term expression in the sum is

non-negative for each i, so that the full sum must also be

non-negative. Note that the third term evaluates to 0, -1, or

-2.

• If it is 0, the three-term expression is already non-

negative since the first two terms are non-negative.
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• If it is -1, then P1[i] 
= P3[i], and one of the two is I .

We must also have P1[i] 
= P2[i] or P2[i] 
= P3[i], so

the first two terms must sum to at least 1. Thus, the

three-term expression is non-negative.

• If it is -2, then P1[i] 
= P3[i], and neither is I . Suppose

that P1[i] = P2[i]; then the first term is +2, and

the three-term expression is non-negative. Similarly, if

P2[i] = P3[i], then the second term is +2, and the three-

term expression is non-negative. And if P1[i] 
= P2[i] 
=
P3[i], then the first two terms are both at least +1, so

the three-term expression is non-negative.

Thus, we conclude that Eq. (7) is a sum over non-negative

numbers which proves that the triangle inequality holds for

the CNOT distance. Therefore, our graph is metric, and

Christofides’ algorithm can be used to efficiently attain a

1.5-approximation to the optimal TSP.

(a) Lexicographic (b) TSP

Figure 4: Pathological example of lexicographic’s subopti-

mality compared to TSP.

Advantage Over Lexicographic Ordering – Although

the lexicographic ordering often leads to large amounts of

gate cancellation, it does not achieve the optimality of TSP

over the entire Hamiltonian. As an example, consider the

4-qubit Hamiltonian with lexicographically ordered strings

[XXXX , XXY Y , XYXY , XY Y X , Y XXY , Y XY X ,

Y Y XX , Y Y Y Y ]. These eight commuting strings arise in

the Jordan-Wigner encoding for molecules, so this example

is ubiquitous [26], [37]. Applying Eq. (5), we see that

8×2×4 = 64 CNOTs are needed prior to gate cancellation.

After CNOT cancellation, summing Eq. (6) along the lexico-

graphic order gives a total of 40 CNOTs. Now consider the

TSP order [XXXX , XXY Y , XYXY , XY Y X , Y XY X ,

Y XXY , Y Y XX , Y Y Y Y ], which flips the fifth and sixth

terms from the lexicographic order. Under TSP, we are able

to generate circuits with only 36 CNOTs. See Fig. 3 for an

example of the gate cancellations that are available in these

two cases. In summary, unoptimized to lexicographic to TSP

have CNOT costs of 64 → 40 → 36.

In certain cases, TSP can have an even greater factor of

improvement over lexicographic ordering. As an example,

consider the nine Pauli terms in Fig. 4, sorted by lexico-
graphic and TSP orderings.

H =

N

∑
i

ciPi = C1 + C2 + ⋯ + CM

1. Partition the Hamiltonian:

C1

C2 CM
⋯

Ca3
⋮

CaM

Cb3

CbM

 la
ye

rs
M

 branchesM − 1

⋯

2. Greedily construct trees based on the number of edges

   shared between the cliques in the commutation graph:

3. Each path from root to leaf is a different clique-clique 

    permutation:

C1C2Ca1…CaM,
4. Select the permutation which has the smallest

    summed magnitudes of Pauli coefficients:

,CMCM−1CaM−1
…CzM−1

⋯

⋮

CM
C1 CM−1

⋯
Cy3
⋮

CyM

Cz3

CzM

⋮

Figure 5: Polynomial time heuristic for selecting a clique-

clique ordering. (1) The commutation graph, which was

constructed to partition the Hamiltonian into M cliques, is

(2) utilized to greedily construct many trees based on the

number of edges shared between cliques. (3) Each traversal

of a tree from root to leaf produces a different clique-

clique permutation. (4) The permutation with the smallest

commutator magnitude (Eq. (8)) is selected.

Without gate cancellation, 9× 10× 2 = 180 CNOTs are

required. Under the lexicographic order, gate cancellation

yields 112 CNOTs. However, with reordering into the TSP

route, only 62 CNOTs are needed. While this particular

example is pathological, it demonstrates scenarios where

lexicographic ordering is asymptotically identical to no-gate

cancellation, but TSP achieves an asymptotic advantage.

This advantage is from O(N2) to O(N logN), which is

a significant improvement.

C. Ordering the Cliques

Finally, the last step in max-commute-tsp is to select

the order in which the cliques, produced via the minimum

clique cover from Sec. IV-A, are simulated. Different or-

derings of the cliques can incur different Trotter errors

by the same reasoning given above for the varying Pauli

term orderings. Determining the optimal clique-clique or-

dering is intractable as it would require knowledge of the

nested commutators between each of the cliques after the

Baker–Campbell–Hausdorff expansion, i.e., an exponential

amount of computation. Therefore, we use a heuristic, which

runs in polynomial time, to decide upon a clique-clique
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ordering that relies on the approximated commutator: the

first-order approximated difference between Uapprox and

Uexact after the Taylor expansion. Note that, for two cliques

C1 =
∑N1

i=1 aiAi and C2 =
∑N2

i=1 biBi, where ai, bi ∈ R

and Ai, Bi are Pauli terms, the commutator between them

is

[C1, C2] = C1C2 − C2C1 =

N1∑
i=1

N2∑
j=1

aibj(AiBj −BjAi).

(8)

Rather than compute the commutator between cliques ex-

actly, the heuristic, shown in Fig. 5, exploits the information

stored in the commutation graph that was used to group

the Pauli terms into fully commuting cliques. Counting the

number of edges between C1 and C2 in the commutator

graph indicates the number of terms within Eq. (8)’s sum

that evaluate to zero. The heuristic uses the number of

inter-clique edges to greedily grow a tree (the nodes of the

tree representing cliques) where each path through the tree

corresponds to a separate clique-clique ordering. Intuitively,

a permutation selected in this manner will produce com-

mutators between the consecutive cliques that contain many

zero terms. One can hope that this will reduce the overall

magnitude of the commutator and therefore contribute very

little to the overall Trotter error.

For each clique produced in the minimum clique cover,

the heuristic constructs the tree described above with the

current clique as the root. It then traverses each of these

trees, producing a set of possible clique-clique permutations.

Finally, for each permutation, compute
∑N1

i=1

∑N2

j=1 |aibj |
over the non-zero terms and select the permutation with the

smallest value, which one would expect to have the smallest

contribution to the Trotter error. For a Hamiltonian which is

partitioned into M cliques, this heuristic has a runtime of

O(M4) and produces O(M2) different permutations.

V. METHODOLOGY

We compare the performance of different ordering strate-

gies by measuring their ability to mitigate both physical and

algorithmic errors via simulation and real device executions.

A benchmark set of 79 molecular Hamiltonians was gener-

ated using the OpenFermion software package [30] and the

NIST Chemistry WebBook [29].

For each of the ordering strategies we simulate the time

dynamics of the benchmark Hamiltonians and at every time

step we increase the Trotter number r until the HS achieves

an error ε < 0.1. The accuracy of a Hamiltonian simulation

is measured using the diamond distance [52]–[54]. The

diamond distance between two quantum processes E and

F is defined as:

d♦(E ,F) := ε = ‖E − F‖♦
= max

ρ
‖(E ⊗ �)ρ− (F ⊗ �)ρ‖1, (9)

where ρ is the density matrix representation of a quantum

state, � is the identity operator acting on the same size

Hilbert space as E and F , and ‖. . .‖1 denotes the trace norm.

The diamond distance is an important and commonly used

metric for distinguishing between two quantum processes

in the absence of noise (i.e., considering only algorithmic

errors) [54], [55]. Once the error threshold is met we

report the number of CNOT gates required in the final

quantum circuit. The results of these noiseless simulations

are presented in Sec. VI-A.

To capture the combined effects of algorithmic and phys-

ical errors on hardware execution we use noisy simulations

with a depolarizing error model E(ρ) = pI
2 + (1 − p)ρ

which adds a noise channel on the two-qubit gates [38]. Each

entangling gate has probability p of depolarizing its control

and target qubits (replacing the qubits with the completely

mixed state I/2), and probability 1−p of leaving the qubits

untouched.

We compare the output distributions of the noisy sim-

ulations and hardware executions using the Hellinger in-

fidelity [56]–[58]. The Hellinger infidelity is defined as

1 −HD(P,Q), where HD(P,Q) is the Hellinger distance,

defined for two probability distributions P and Q as

HD(P,Q) =
1√
2
||
√
P −

√
Q||2. (10)

Eq. (10) is preferable for these experiments because they

output probability distributions. Additionally, the diamond

distance involves a maximization over all quantum states ρ
to capture the worst-case difference between two quantum

channels, but for experiments on real hardware a specific

initial state must be chosen.

All of the code used to generate and test the benchmarks

is available online in a Github repository [59].

VI. BENCHMARK RESULTS

A. Noiseless Simulation

In both the NISQ and fault-tolerant regimes, circuit depth

and total gate count are important metrics of comparison

for quantum circuits. In the NISQ era, these metrics are

closely related to the probability that a circuit will execute

successfully or succumb to the effects of noise. In the fault-

tolerant regime, circuit depth and gate count are directly

linked to the runtime of quantum programs. In the case of

Hamiltonian simulation, a higher Trotter number r provides

a more accurate simulation, but the total gate cost scales

proportionally with r.

In Fig. 6 we report the results of noiseless simulations

of the time dynamics of the benchmark molecular Hamilto-

nians. At every time step we require that the HS achieve

an error ε < 0.1, increasing r until this constraint is

satisfied, and then computing the final number of CNOT

gates required. In Fig. 6a max-commute-tsp is able to si-

multaneously mitigate both algorithmic and physical errors.
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(a)

(b)

(c)

Figure 6: Noiseless simulations of the time dynamics of 79 molecular Hamiltonians with an error threshold ε < 0.1. Each

molecule is represented with 4 qubits, and at every time step the Trotter number r is increased until the diamond distance

between the HS quantum circuit and the exact evolution unitary is below the error threshold.

Compared to the other ordering strategies, max-commute-
tsp is able to produce accurate HS circuits using fewer

entangling gates. On average, both the max-commute-tsp and

magnitude orderings require similar Trotter numbers to reach

the error threshold ε < 0.1 as shown in Fig. 6c. However,

the TSP ordering of the Pauli terms within cliques allows

the max-commute-tsp strategy to cancel an average of 39%

more gates than the magnitude ordering. The average 40%

difference in gate count between the lexicographic and max-
commute-tsp strategies is mostly due to the higher Trotter

numbers needed for the lexicographic ordering to surpass

the accuracy threshold.

The need to mitigate both sources of error is made

apparent by comparing the results of the lexicographic and

magnitude orderings. The lexicographic HS circuits cancel

many gates and are able to mitigate physical errors quite

well. The magnitude ordering is well suited to the regime of

molecular Hamiltonians and is able to achieve high accuracy

with low Trotter number. In Fig. 6a, at small t values the

poor accuracy of the lexicographic ordering is compensated

by its ability for gate cancellation, but for t > 0.35 the

magnitude ordering is able to produce shorter HS circuits

because it requires a smaller Trotter number.

B. Noisy Simulation and Hardware Evaluation

We conducted noisy simulations of each benchmark

Hamiltonian under a depolarizing error model using the

lexicographic, magnitude, and max-commute-tsp orderings

with an initial state ψinit = 1√
2
(|0011〉 + |1100〉). In

addition, six small benchmark Hamiltonians were evaluated

on trapped ion processors. For each simulation and hardware

execution the time and Trotter number parameters were set

to t = 1 and r = 1 due to the error rates of current

NISQ hardware. The increased noise incurred by the deeper

circuits for r > 1 quickly overwhelms the results of the

computation.

Fig. 7 shows the measured distribution of Hellinger infi-

delities across four different error rates. The max-commute-
tsp ordering produces HS circuits with lower infidelity on

average and also attains a minimum infidelity that is 1.2,

2.4, 3.6, 6.7% lower than the minimum achieved by either

the lexicographic or magnitude orderings for each of the 0.1,

0.5, 1.0, 2.0% error rates, respectively.

The results of the trapped ion experiments are contained

in Table I. The ethene (C2H4) benchmark was run on a 7-

qubit device [60] (4000 shots) while the remainder utilized

an IonQ device with 11-qubits [3] (1000 shots each). Each

benchmark circuit was prepared in the initial state ψinit and

consists of 4 data qubits and 1 ancilla qubit. Both processors

have average entangling gate errors near 2%. The experimen-

tal results are in shown in Fig. 7 as the stars (7-qubit) and

crosses (11-qubit). The hardware experiments confirm the

results of the noisy-simulations and also highlight the impact

of algorithmic errors — even for current NISQ processors.

For the Cl2, C2H2, F2, and N2 benchmark molecules

the magnitude ordering, which produced deeper quantum
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Figure 7: Distribution of Hellinger infidelities after evolving

the entangled initial state ψinit. The solid lines making

up each violin plot denote the max, mean, and min of

the distribution. The stars and crosses indicate experimental

results obatained via a 7- and 11-qubit ion trap processor,

respectively [3], [60].

Molecule Diamond Dist. (ε) 2-qubit gates Hellinger Inf. (%)
lex, mag, mctsp lex, mag, mctsp lex, mag, mctsp

C2H4 2.9, 1.8e-3, 1.8e-3 55, 49, 41 75.9, 55.2, 53.8
Cl2 1.9, 1.4e-4, 1.4e-4 47, 53, 37 62.2, 56.6, 54.2

C2H2 1.9, 1.3e-3, 1.3e-3 47, 53, 37 62.4, 57.2, 57.7
F2 1.1, 3.0e-3, 3.0e-3 47, 53, 37 71.0, 56.7, 52.2
N2 1.7, 1.2e-3, 1.2e-3 47, 53, 37 61.9, 54.6, 54.1
O2 3.1, 4.1e-3, 4.1e-3 41, 41, 27 59.6, 59.7, 46.5

Table I: Diamond distances, gate counts, and Hellinger

infidelities for the benchmarks evaluated on ion trap QPUs.

circuits, attained lower infidelities than the lexicographic
ordering. The difference in performance can be attributed to

the high (low) diamond distance between the lexicographic
(magnitude) ordering and the ideal evolution. Interestingly,

both strategies produced circuits of equal depth for the

O2 benchmark and achieved similar Hellinger infidelities

despite a large difference in diamond distance. This may be

due to the specific choice of initial state since the diamond

distance is a measure of error over all initial states while

the reported Hellinger infidelity is measured with respect to

a single initial state.

VII. CONCLUSION & FUTURE DIRECTIONS

In this work, we introduced a new compilation method

for Pauli term ordering, max-commute-tsp, which is able to

simultaneously mitigate algorithmic and physical errors
in the quantum circuits that perform Hamiltonian simula-

tions. Our hardware-level insights into the nature of the al-

gorithmic errors guided us toward a solution which exploits

the commutativity between Pauli terms to mitigate these

errors. Additionally, max-commute-tsp is able to mitigate

physical errors by observing that the Pauli terms within

each clique can be reordered to maximize gate cancellation

via a TSP heuristic. While maintaining the same accuracy,

max-commute-tsp is able to produce HS circuits that are

39% shorter than other compilation methods. Additionally,

we use realistic noise models and real device executions to

demonstrate the combined importance of algorithmic and

physical error mitigation.

It is important to note that, in the case of Hamiltonian

simulation, even small improvements in accuracy can have

significant impact. We point out two specific reasons below:

• When concatenating many instances of the HS circuits

together (i.e., for HS with Trotter number r > 1), errors

will accumulate with each repetition of the circuit.

Therefore, reducing the error of the HS subcircuit can

have an exponential impact on the final accuracy. For

variational algorithms (such as VQE and QAOA), the

same circuit is executed many times with classical post-

processing in between. Reducing the error within this

circuit will at least linearly increase the accuracy of any

estimated observables.

• For quantum chemistry applications, a small reduc-

tion in error is likely to have a substantial effect.

An improvement in quantum circuit fidelity would

similarly improve a quantum algorithm’s ability to

compute exact ground state energies. Most classical

approaches utilize approximation algorithms to estimate

the ground state energy (since an exact diagonalization

requires exponential classical computing resources) and

even single digit improvements in accuracy are highly

desirable [61], [62].

Our open-source software repository [59] allows users

to construct HS circuits compiled via any of the ordering

strategies considered here. This general compilation frame-

work can be easily adapted to specific problem instances. For

example, one can perform max-commute-tsp on a partial set

of the Pauli terms if the user has prior knowledge that the

partial sets tend to share similar physical properties.

Future work will involve developing Hamiltonian simula-

tions for regimes other than the molecular systems studied

here (e.g., solid-state structures [63], high energy physics

[64], protein folding [65], etc.). The varied physical prop-

erties of these systems may result in different correlations

between Pauli terms. These regimes may by difficult for

inflexible strategies such as magnitude or lexicographic
because most of their development has been centered around

molecular Hamiltonians. Recent work on QAOA [66] sug-

gests the use of complicated mixing Hamiltonians that

consist of many non-commuting Pauli terms, which would

invoke Trotter errors during evolution. A flexible ordering

strategy like max-commute-tsp would significantly reduce

such Trotter errors, while also keeping the circuits short,

improving the performance of QAOA and expanding the

domain of tractable problems.
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